Chế tạo một loại nanocomposite bề mặt hydroxyapatite/polyether ether ketone mới thông qua quá trình khuấy ma sát cho các ứng dụng chỉnh hình và nha khoa

Davood Almasi1, Woei Jye Lau2, Sajad Rasaee3, Roohollah Sharifi1, Hamid Reza Mozaffari4,5
1Department of Endodontic, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
2School of Chemical and Energy Engineering, University Teknologi Malaysia, Skudai, Malaysia
3Department of Mechanical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran
4Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
5Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Tóm tắt

Có sự quan tâm ngày càng tăng trong việc sử dụng polyether ether ketone (PEEK) cho các ứng dụng cấy ghép chỉnh hình và nha khoa nhờ vào mô đun đàn hồi (gần tương tự như xương), tính tương thích sinh học và tính chất xuyên sáng. Tuy nhiên, PEEK vẫn được phân loại là bioinert do khả năng tích hợp thấp với các mô xung quanh. Các phương pháp như phủ hydroxyapatite (HA) lên bề mặt PEEK có thể làm tăng tính sinh học của nó. Tuy nhiên, việc phủ HA mà không làm hỏng nền PEEK vẫn cần được nghiên cứu thêm. Quá trình khuấy ma sát là một phương pháp chế biến trạng thái rắn được sử dụng rộng rãi để chế tạo các nền tảng composite. Trong nghiên cứu này, một công cụ không có đinh đã được sử dụng để chế tạo một nanocomposite bề mặt HA/PEEK cho các ứng dụng chỉnh hình và nha khoa. Hình ảnh vi mô của nền tảng đã được biến đổi xác nhận sự phân bố đồng đều của HA trên bề mặt của PEEK. Các nanocomposite bề mặt HA/PEEK thu được cho thấy độ ưa nước bề mặt được cải thiện kèm theo khả năng hình thành apatite tốt hơn (như được chứng minh trong dịch thể mô phỏng cơ thể) so với PEEK nguyên bản, làm cho vật liệu mới phát triển này trở nên phù hợp hơn cho các ứng dụng sinh học. Phương pháp phủ bề mặt này được thực hiện ở nhiệt độ thấp sẽ không làm hỏng nền PEEK và do đó có thể là một lựa chọn tốt cho các phương pháp thương mại hiện có để điều chỉnh bề mặt PEEK.

Từ khóa

#polyether ether ketone #hydroxyapatite #cấy ghép chỉnh hình #cấy ghép nha khoa #chế tạo nanocomposite

Tài liệu tham khảo

Ahmed H, Van Tooren M, Justice J, Harik R, Kidane A, Reynolds AP (2018) Investigation and development of friction stir welding process for unreinforced polyphenylene sulfide and reinforced polyetheretherketone. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705718785676

Alla RK, Ginjupalli K, Upadhya N, Shammas M, Ravi RK, Sekhar R (2011) Surface roughness of implants: a review. Trends Biomater Artif Organs 25:112–118

Almasi D, Iqbal N, Sadeghi M, Sudin I, Abdul Kadir MR, Kamarul T (2016) Preparation methods for improving PEEK’s bioactivity for orthopedic and dental application: a review. Int J Biomater 2016:12. https://doi.org/10.1155/2016/8202653

Aravind K, Sangeetha D (2015) Characterization and in vitro studies of sulfonated polyether ether ketone/polyether sulfone/nano hydroxyapatite composite. Int J Polym Mater Polym Biomater 64:220–227. https://doi.org/10.1080/00914037.2014.936594

Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–3082. https://doi.org/10.1016/j.biomaterials.2007.03.013

Bakar MA, Cheang P, Khor K (2003) Tensile properties and microstructural analysis of spheroidized hydroxyapatite–poly (etheretherketone) biocomposites. Mater Sci Eng A 345:55–63

Barletta M, Gisario A, Rubino G (2011) Scratch response of high-performance thermoset and thermoplastic powders deposited by the electrostatic spray and ‘hot dipping’fluidised bed coating methods: the role of the contact condition. Surf Coat Technol 205:5186–5198

Chou L, Marek B, Wagner WR (1999) Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials 20:977–985. https://doi.org/10.1016/S0142-9612(98)00254-3

Costa MI, Verdera D, Vieira MT, Rodrigues DM (2014) Surface enhancement of cold work tool steels by friction stir processing with a pinless tool. Appl Surf Sci 296:214–220. https://doi.org/10.1016/j.apsusc.2014.01.094

Farnoush H, Abdi Bastami A, Sadeghi A, Aghazadeh Mohandesi J, Moztarzadeh F (2013a) Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution. J Mech Behav Biomed Mater 20:90–97. https://doi.org/10.1016/j.jmbbm.2012.12.001

Farnoush H, Sadeghi A, Abdi Bastami A, Moztarzadeh F, Aghazadeh Mohandesi J (2013b) An innovative fabrication of nano-HA coatings on Ti-CaP nanocomposite layer using a combination of friction stir processing and electrophoretic deposition. Ceram Int 39:1477–1483. https://doi.org/10.1016/j.ceramint.2012.07.092

Filiaggi MJ, Coombs NA, Pilliar RM (1991) Student research award in the undergraduate, Master candidate category, or health science degree candidate category, 17th annual meeting of the society for biomaterials, scottsdale, AZ may 1–5, 1991. Characterization of the interface in the plasma-sprayed HA coating/Ti-6Al-4V implant system. J Biomed Mater Res 25:1211–1229. https://doi.org/10.1002/jbm.820251004

Gan YX, Solomon D, Reinbolt M (2010) Friction stir processing of particle reinforced composite. Materials 3:329–350. https://doi.org/10.3390/ma3010329

Ha SW, Mayer J, Koch B, Wintermantel E (1994) Plasma-sprayed hydroxylapatite coating on carbon fibre reinforced thermoplastic composite materials. J Mater Sci Mater Med 5:481–484. https://doi.org/10.1007/BF00058987

Ha SW, Gisep A, Mayer J, Wintermantel E, Gruner H, Wieland M (1997) Topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite coatings on carbon fibre-reinforced poly(etheretherketone). J Mater Sci Mater Med 8:891–896

Hahn B-D et al (2013) Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery. Appl Surf Sci 283:6–11. https://doi.org/10.1016/j.apsusc.2013.05.073

Huang J, Best S, Bonfield W, Brooks R, Rushton N, Jayasinghe S, Edirisinghe M (2004) In vitro assessment of the biological response to nano-sized hydroxyapatite. J Mater Sci Mater Med 15:441–445

Kokubo T (1998) Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater 46:2519–2527. https://doi.org/10.1016/S1359-6454(98)80036-0

Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

Landi E, Tampieri A, Celotti G, Sprio S (2000) Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc 20:2377–2387. https://doi.org/10.1016/S0955-2219(00)00154-0

Lee JH et al (2013) In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater 9:6177–6187. https://doi.org/10.1016/j.actbio.2012.11.030

Liu F et al (2009) Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass film. Surf Coat Technol 203:3480–3484

Mendonça G, Mendonça DB, Aragao FJ, Cooper LF (2008) Advancing dental implant surface technology—from micron-to nanotopography. Biomaterials 29:3822–3835

Morishige T, Tsujikawa M, Hino M, Hirata T, Oki S, Higashi K (2008) Microstructural modification of cast Mg alloys by friction stir processing. Int J Cast Met Res 21:109–113. https://doi.org/10.1179/136404608X361774

Müller KH, Motskin M, Philpott AJ, Routh AF, Shanahan CM, Duer MJ, Skepper JN (2014) The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages. Biomaterials 35:1074–1088. https://doi.org/10.1016/j.biomaterials.2013.10.041

Pan YS, Wang J, Pan CL Research on biological properties of PEEK based composites. In: Applied mechanics and materials, 2013. Trans Tech Publ, pp 3–7

Paoletti A, Lambiase F, Di Ilio A (2016) Analysis of forces and temperatures in friction spot stir welding of thermoplastic polymers. Int J Adv Manuf Technol 83:1395–1407. https://doi.org/10.1007/s00170-015-7669-y

Prasad R, Raghava PM (2012) Fsw of polypropylene reinforced with Al2O3 nano composites, effect on mechanical and microstructural properties. Int J Eng Res Appl 2:288–296

Rabiei A, Sandukas S (2013) Processing and evaluation of bioactive coatings on polymeric implants. J Biomed Mater Res Part A 101A:2621–2629. https://doi.org/10.1002/jbm.a.34557

Radin SR, Ducheyne P (1992) Plasma spraying induced changes of calcium phosphate ceramic characteristics and the effect onin vitro stability. J Mater Sci Mater Med 3:33–42. https://doi.org/10.1007/BF00702942

Ratna Sunil B, Sampath Kumar TS, Chakkingal U, Nandakumar V, Doble M (2014a) Friction stir processing of magnesium–nanohydroxyapatite composites with controlled in vitro degradation behavior. Mater Sci Eng C 39:315–324. https://doi.org/10.1016/j.msec.2014.03.004

Ratna Sunil B, Sampath Kumar TS, Chakkingal U, Nandakumar V, Doble M (2014b) Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites. J Mater Sci Mater Med 25:975–988. https://doi.org/10.1007/s10856-013-5127-7

Roeder RK, Converse GL, Kane RJ, Yue W (2008) Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. JOM 60:38–45

Shen X, Bo L, Zhao J, Wei-Zhong X, Sun W (2014) A review of hydroxyapatite microstructure regulation with hydrothermal method. J Funct Mater 45:03006–03010

Shi Z, Huang X, Cai Y, Tang R, Yang D (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5:338–345

Stanford C (2008) Surface modifications of dental implants. Austr Dental J 20:53

Strnad Z, Strnad J, Povysil C, Urban K (2000) Effect of plasma-sprayed hydroxyapatite coating on the osteoconductivity of commercially pure titanium implants. Int J Oral Maxillofac Implants 15:483–490

Wang L, Weng L, Song S, Sun Q (2010) Mechanical properties and microstructure of polyetheretherketone–hydroxyapatite nanocomposite materials. Mater Lett 64:2201–2204

Wang L, Weng L, Song S, Zhang Z, Tian S, Ma R (2011) Characterization of polyetheretherketone–hydroxyapatite nanocomposite materials. Mater Sci Eng A 528:3689–3696

Wang L et al (2014) Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials 35:6758–6775

Wu X, Liu X, Wei J, Ma J, Deng F, Wei S (2012) Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies. Int J Nanomed 7:1215

Xu S, Ma X, Wen H, Tang G, Li C (2014) Effect of annealing on the mechanical and scratch properties of BCN films obtained by magnetron sputtering deposition. Appl Surf Sci

Xue W, Tao S, Liu X, Zheng X, Ding C (2004) In vivo evaluation of plasma sprayed hydroxyapatite coatings having different crystallinity. Biomaterials 25:415–421. https://doi.org/10.1016/S0142-9612(03)00545-3

Zhang G, Leparoux S, Liao H, Coddet C (2006) Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate. Script Mater 55:621–624. https://doi.org/10.1016/j.scriptamat.2006.06.010