Fabrication of Non-woven Fabric-Based SERS Substrate for Direct Detection of Pesticide Residues in Fruits

Lemei Cai1, Zhuo Deng1, Jing Dong1, Shidong Song1, Yiru Wang2, Xi Chen1
1Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
2Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aragay G, Pino F, Merkoci A. Nanomaterials for sensing and destroying pesticides. Chem Rev. 2012;112:5317–38.

Pang S, Yang T, He L. Review of surface enhanced Raman spectroscopic (SERS) 225 detection of synthetic chemical pesticides TrAC Trends. Anal Chem. 2016;85:73–82.

Seebunrueng K, Santaladchaiyakit Y, Soisungnoen P, Srijaranai S. Catanionic surfactant ambient cloud point extraction and high-performance liquid chromatography for simultaneous analysis of organophosphorus pesticide residues in water and fruit juice samples. Anal Bioanal Chem. 2011;401:1703–12.

Lee H-J, Shan G, Watanabe T, Stoutamire DW, Gee SJ, Hammock BD. Enzyme-linked immunosorbent assay for the pyrethroid deltamethrin. J Agr Food Chem. 2002;50:5526–32.

Alam MN, Chowdhury MAZ, Hossain MS, Mijanur Rahman M, Rahman MA, Gan SH. Detection of residual levels and associated health risk of seven pesticides in fresh eggplant and tomato samples from Narayanganj District. J Chem. 2015;2015:7.

Maštovská K, Lehotay SJ, Anastassiades M. Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes. Anal Chem. 2005;77:8129–37.

Menezes Filho A, dos Santos FN, de Paula Pereira PA. Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GC–MS) for the determination of pesticide residues in mangoes. Talanta. 2010;81:346–54.

Brito N, Navickiene S, Polese L, Jardim E, Abakerli R, Ribeiro M. Determination of pesticide residues in coconut water by liquid-liquid extraction and gas chromatography with electron-capture plus thermionic specific detection and solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. J Chromatogr A. 2002;957:201–9.

Luo H, Huang Y, Lai K, Rasco BA, Fan Y. Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food Control. 2016;68:229–35.

Wang J, Kong L, Guo Z, Xu J, Liu J. Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide. J Mater Chem. 2010;20:5271–9.

Zhong LB, Yin J, Zheng YM, Liu Q, Cheng XX, Luo FH. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal Chem. 2014;86:6262–7.

Gong Z, Du H, Cheng F, Wang C, Wang C, Fan M. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl Mater Interfaces. 2014;6:21931–7.

Ma Y, Liu H, Mao M, Meng J, Yang L, Liu J. Surface-enhanced Raman spectroscopy on liquid interfacial nanoparticle arrays for multiplex detecting drugs in urine. Anal Chem. 2016;88:8145–51.

Kodiyath R, Malak ST, Combs ZA, Koenig T, Mahmoud MA, El-Sayed MA, Tsukruk VV. Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. J Mater Chem A. 2013;1:2777–88.

Liu F, Lu YH, Yu WH, Fu Q. W P, Ming H. Tunable surface-enhanced Raman spectroscopy via plasmonic coupling between nanodot-arrayed Ag film and Ag nanocube. Plasmonics. 2013;8:1279–84.

Ping HM, Chen YZ, Guo HZ, Wang ZW, Zeng DQ, Wang LS, Peng DL. A facile solution approach for the preparation of Ag@Ni core-shell nanocubes. Mater Lett. 2014;116:239–42.

Yang X, Roling LT, Vara M, Elnabawy AO, Zhao M, Hood ZD, Bao SX, Mavrikakis M, Xia YN. Synthesis and characterization of Pt–Ag alloy nanocages with enhanced activity and durability toward oxygen reduction. Nano Lett. 2016;16:6644–9.

Xia XH, Zeng J, McDearmon B, Zheng YQ, Li QG, Xia YN. Silver nanocrystals with concave surfaces and their optical and surface-enhanced Raman scattering properties. Angew Chem Int Ed. 2011;52:12542–6.

Deng Z, Chen X, Wang Y, Fang E, Zhang Z, Chen X. Headspace thin-film microextraction coupled with surface-enhanced Raman scattering as a facile method for reproducible and specific detection of sulfur dioxide in wine. Anal Chem. 2015;87:633–40.

Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem. 2016;88:2149–55.

Ren W, Zhu C, Wang E. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale. 2012;4:5902–9.

Peksa V, Jahn M, Štolcová L, Schulz V, Proška J, Procházka M, Weber K, Cialla-May D, Popp JR. Quantitative SERS analysis of azorubine (E 122) in sweet drinks. Anal Chem. 2015;87:2840–4.

Du J, Cui J, Jing C. Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem Commun. 2014;50:347–9.

Schmidt H, Ha NB, Pfannkuche J, Amann H, Kronfeldt HD, Kowalewska G. Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS). Mar Pollut Bull. 2004;49:229–34.

Panarin AY, Chirvony VS, Kholostov KI, Turpin PY, Terekhov SN. Formation of SERS-active silver structures on the surface of mesoporous silicon. J Appl Spectrosc. 2009;2:280–7.

Fan M, Brolo AG. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys Chem Chem Phys. 2009;11:7981.

Zhou N, Meng G, Huang Z, Ke Y, Zhou Q, Hu X. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst. 2016;141:5864–9.

Meng Y, Lai Y, Jiang X, Zhao Q, Zhan J. Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection. Analyst. 2013;138:2090–5.

Zhong LB, Yin J, Zheng YM, Liu Q, Cheng XX, Luo FH. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal Chem. 2014;86:6262–7.

Lee CH, Hankus ME, Tian L, Pellegrino PM, Singamaneni S. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal Chem. 2011;83:8953–8.

Hubbe MA, Ayoub A, Daystar JS, Venditti RA, Pawlak JJ. Enhanced absorbent products incorporating cellulose and its derivatives. BioResources. 2013;8:6556–629.

Wang J, Yang L, Liu B, Jiang H, Liu R, Yang J, Han G, Mei Q, Zhang Z. Inkjet-printed silver nanoparticle paper detects airborne species from crystalline explosives and their ultratrace residues in open environment. Anal Chem. 2014;86:3338–45.

Gong ZJ, Du HJ, Cheng FS, Wang C, Wang CC, Fan MK. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl Mater Interfaces. 2014;6:21931–7.

Fan M, Andrade GF, Brolo AG. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta. 2011;693:7–25.

Shi YE, Li L, Yang M, Jiang X, Zhao Q, Zhan J. A disordered silver nanowires membrane for extraction and surface-enhanced Raman spectroscopy detection. Analyst. 2014;139:2525–30.

Ma C, Trujillo MJ, Camden JP. Nanoporous silver film fabricated by oxygen plasma: a facile approach for SERS substrates. ACS Appl Mater Interfaces. 2016;36:23978–84.

Qu LL, Li DW, Xue JQ, Zhai WL, Fossey JS, Long YT. Batch fabrication of disposable screen printed SERS arrays. Lab Chip. 2012;12:879–81.

Yu WW, White IM. Inkjet printed surface enhanced raman spectroscopy array on cellulose paper. Anal Chem. 2010;82:9626–30.