Fabrication of Electrically Active Si-based Thin Films by Pulsed Laser Deposition of SiO/C Dual Targets

Springer Science and Business Media LLC - Tập 1148 - Trang 1-6 - 2009
Yusaburo Ono1, Yushi Kato1, Yasuyuki Akita1, Makoto Hosaka1, Naoki Shiraishi1, Makoto Yamaguchi2, Osami Sakata3, Mamoru Yoshimoto1
1Department of Innovative & Engineered Materials, Tokyo Institute of Technology, Midori-ku, Japan
2OSAKA Titanium technologies Co., Ltd., Higashihama-cho, Amagasaki, Japan
3Japan Synchrotron Radiation Research Institute/ SPring-8, Kouto, Sayo-cho, Sayo-gun, Japan

Tóm tắt

We investigated the fabrication of Si nanocrystals, including thin films, by annealing the SiO/C/SiO thin films in an Ar atmosphere. The SiO/C/SiO trilayered thin films were deposited on α-Al2O3 (0001), Si (111), or ITO-coated borosilicate glass substrates at room temperature by pulsed laser deposition using dual sintered SiO and graphite targets. The SiO/C/SiO thin films subjected to heat treatment at 500°C included nanocrystalline Si. Measurements by synchrotron radiation X-ray diffraction indicated the formation of Si nanocrystals having a size of 5–10 nm. Fourier transform infrared spectra showed that Si–O stretching and vibrational peak intensities of the as-deposited thin film decreased remarkably after annealing. The C layer in the SiO/C/SiO trilayered thin films is considered to play a role in enhancing the chemical reaction that produces Si nanocrystals through reduction of SiO during heat treatment. The annealed SiO/C-based thin films, including Si nanocrystals, exhibited photosensitive conduction behavior in current–voltage measurements.

Tài liệu tham khảo

J. Nishizawa, T. Kurabayashi, K. Kanamoto, T. Yoshida, and T. Oizumi, Mater. Sci. Semicond. Process 6, 363 (2003). H.H.S. Javadi, W.R. McGrath, B. Bumble, and H.G. LeDuc, Appl. Phys. Lett. 61, 2712 (1992). A. Bierhals, A.G. Aberle, and R. Hezel, J. Appl. Phys. 83, 1371 (1998). H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizawa, and T. Nakagiri, Appl. Phys. Lett. 56, 2379 (1990). L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990). T. Shimizu-Iwayama, N. Kurumado, D.E. Hole, and P.D. Townsend, J. Appl. Phys. 83, 6018 (1998). H.Z. Song and X.M. Bao, Phys. Rev. B 55, 6988 (1997). H. Seifarth, R. Grötzschel, A. Markwitz, W. Matz, P. Nitzsche, and L. Rebohle, Thin Solid Film 330, 202 (1998). Y. Kanzawa, T. Kageyama, S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Solid State Commun. 102, 533 (1997). T. Makino, Y. Yamada, N. Suzuki, T. Yoshida, and S. Onari, J. Appl. Phys. 90, 5075 (2001). A.V. Kabashin, M. Meunier, and R. Leonelli, J. Vac. Sci. Technol. B 19, 2217 (2001). L. Patrone, D. Nelson, V.I. Safarov, M. Sentis, W. Marine, and S. Giorgio, J. Appl. Phys. 87, 3829 (2000). Y.C. Fang, W.Q. Li, L.J. Qi, L.Y. Li, Y.Y. Zhao, Z.J. Zhang, and M. Lu, Nanotechnology 15, 494 (2004). D. Nasheva, I. Bineva, Z. Levi, Z. Aneva, Ts. Merdzhanova, and J.C. Pivin, Vacuum 68, 1 (2003). F. Zignani, A. Desalvo, E. Centurioni, D. Iencinella, R. Rizzoli, C. Summonte, and A. Migliori, Thin Solid Films 350, 451–452 (2004). Y. Kurokawa, S. Miyajima, Y. Yamada, and M. Konagai, Jpn. J. Appl. Phys. L1064, 45 (2006). Y. Kurokawa, S. Tomita, S. Miyajima, Y. Yamada, and M. Konagai, Jpn. J. Appl. Phys. L833, 46 (2007). A.L. Kundu, S.C. Prasad, H.S. Prakash, and M. Prasad, Trans. Indian Inst. Met. 57 (2), 2004, 109–121 (2004). S. D. Hutagalung, K. A. Yaacob, and A. F. Abdul Aziz, Applied Surface Science 254, 633–637 (2007). C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440–450 (2004). M. Yoshimoto, K. Yoshida, H. Maruta, Y. Hishitani, H. Koinuma, S. Nishio, M. Kakihana, T. Tachibana, Nature 399, 340–342 (1999). K. Nakajima, M. Furusawa, T. Yamamoto, J. Tashiro, A. Sasaki, T. Chikyow, P. Ahmet, H. Yamada, M. Yoshimoto, Diamond and Related Materials 11, 953–956 (2002). D. Cullity, Elements of X-ray Diffraction 2nd ed. (Addison Wesley Pub. Co., Mass., 1978) p. 84. C. Banerjee, J. Sritharathikhun, A. Yamada, and M. Konagai, J. Phy. D: Apl. Phys. 41 185107 (5 pp) (2008).