Fabrication of Cu2ZnSnS4 (CZTS) by co-electrodeposition of Cu-Zn-Sn alloys, and effect of chemical composition of CZTS on their photoelectrochemical water splitting

Results in Chemistry - Tập 5 - Trang 100900 - 2023
Mitsuru Tanaka1, Yuya Hirose1, Yoshiyuki Harada2,3, Masanari Takahashi4, Yoshihisa Sakata5, Shinya Higashimoto1
1Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
2Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
3Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
4Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
5Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan

Tài liệu tham khảo

Møllera, 2017, Hydrogen - A sustainable energy carrier, Prog. Nat. Sci.: Mater., 27, 34, 10.1016/j.pnsc.2016.12.014 J. Jia, L.C. Seitz, J.D. Benck, Y. Huo, Y. Chen, J.W.D. Ng, T. Bilir, J.S. Harris, T.F. Jaramillo, Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%, Nat. Commun. 7 (2016) 13237, https://doi.org/10.1038/ncomms13237. Cheng, 2018, Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency, ACS Energy Lett, 3, 1795, 10.1021/acsenergylett.8b00920 Wang, 2020, A defective g-C3N4/RGO/TiO2 composite from hydrogen treatment for enhanced visible-light photocatalytic H2 production, Nanoscale, 12, 22030, 10.1039/D0NR05141A Yang, 2021, Stable and efficient seawater splitting on a porous phosphate-intercalated NiFe (oxy)hydroxide@NiMoO4 core-shell micropillar electrode, Energy Mater., 1 X. Chen, J. Zhao, G. Li, D. Zhang, H. Li, Recent advances in photocatalytic renewable energy production, Energy Mater. 2 (2022) 200001, https://doi.org/10.20517/energymater.2021.24. Luo, 2016, Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting, Nano Lett., 16, 1848, 10.1021/acs.nanolett.5b04929 Tomita, 2019, Photoelectrochemical properties of copper oxide (CuO) influenced by work functions of conductive electrodes, Res. Chem. Intermed., 45, 5947, 10.1007/s11164-019-04012-x Tang, 2014, Fabrication of a CuInS2 photoelectrode using a single-step electrodeposition with controlled calcination atmosphere, RSC Adv., 4, 3278, 10.1039/C3RA45691A J. Zhao, T. Minegishi, L.i. Zhang, M. Zhong, Gunawan, M. Nakabayashi, G. Ma, T. Hisatomi, M. Katayama, S. Ikeda, N. Shibata, T. Yamada, K. Domen, Enhancement of Solar Hydrogen Evolution from Water by Surface Modification with CdS and TiO2 on Porous CuInS2 Photocathodes Prepared by an Electrodeposition-Sulfurization Method, Angew. Chem. Int. Ed. 53 (44) (2014) 11808–11812, https://doi.org/10.1002/anie.201406483. Gunawan, 2015, Investigation of the Electric Structures of Heterointerfaces in Pt- and In2S3-Modified CuInS2 Photocathodes Used for Sunlight-Induced Hydrogen Evolution, ACS Appl. Mater. Interfaces, 7, 16086, 10.1021/acsami.5b04634 Liu, 2018, Photoelectrochemical Water Splitting of CuInS2 Photocathode Collaborative Modified with Separated Catalysts Based on Efficient Photogenerated Electron-Hole Separation, ACS Sustainable Chem. Eng., 6, 10289, 10.1021/acssuschemeng.8b01607 Zhao, 2019, Efficient hydrogen evolution on (CuInS2)x(ZnS)1–x solid solution-based photocathodes under simulated sunlight, Chem. Commun., 55, 470, 10.1039/C8CC08623K Matoba, 2021, Fabrication of Pt/In2S3/CuInS2 thin film as stable photoelectrode for water splitting under solar light irradiation, Catal. Today, 375, 87, 10.1016/j.cattod.2020.01.015 Matoba, 2021, Photoelectrochemical water splitting on the Pt-In2S3/CuInS2 photoelectrode under solar light irradiation: Effects of electrolytes on the solar energy to hydrogen conversion, J. Electroanal. Chem., 895, 10.1016/j.jelechem.2021.115489 Tanaka, 2023, Photocatalytic Water Splitting on the CuInS2 Photoelectrodes: Effects of co-Electrodeposition Mechanisms on the Photoelectrochemical Properties, Catal. Today, 410, 302, 10.1016/j.cattod.2022.02.003 S. B. Jathar, S. R. Rondiya, Y. A. Jadhav, D. S. Nilegave, R. W. Cross, S. V. Barma, M. P. Nasane, S. A. Gaware, B. R. Bade, S. R. Jadkar, A. M. Funde, N. Y. Dzade, Ternary Cu2SnS3: Synthesis, Structure, Photoelectrochemical Activity, and Heterojunction Band Offset and Alignment, Chem. Mater. 33 (2021) 1983-1993, https://doi.org/10.1021/acs.chemmater.0c03223. Kageshima, 2021, Photocatalytic and Photoelectrochemical Hydrogen Evolution from Water over Cu2SnxGe1–xS3 Particles, J. Am. Chem. Soc., 143, 5698, 10.1021/jacs.0c12140 Kamemoto, 2023, Photocatalytic water splitting on Cu2SnS3 photoelectrode: effects of Cu/Sn composite ratio on the photoelectrochemical performance, Catal. Today, 411–412, 113820, 10.1016/j.cattod.2022.06.035 Yokoyama, 2010, H2 Evolution from Water on Modified Cu2ZnSnS4 Photoelectrode under Solar Light, Appl. Phys. Express, 3, 10.1143/APEX.3.101202 Yang, 2016, Molecular chemistry controlled hybrid ink-derived Cu2ZnSnS4 photocathodes for photoelectrochemical water splitting, ACS Energy Lett., 1, 1127, 10.1021/acsenergylett.6b00453 Y. Qi, Q. Tian, Y. Meng, D. Kou, Z. Zhou, W. Zhou, S. Wu, Elemental precursor solution processed (Cu1−xAgx)2ZnSn(S, Se)4 photovoltaic devices with over 10% efficiency, ACS Appl. Mater. Interfaces 9 (25) (2017) 21243–21250,https://doi.org/10.1021/acsami.7b03944. Tay, 2018, Solution-processed Cd-substituted CZTS photocathode for efficient solar hydrogen evolution from neutral water, Joule, 2, 537, 10.1016/j.joule.2018.01.012 Xu, 2019, Band positions and photoelectrochemical properties of solution-processed silver-substituted Cu2ZnSnS4 photocathode, ACS Appl. Energy Mater., 2, 2779, 10.1021/acsaem.9b00116 Tay, 2020, Improving the interfacial properties of CZTS photocathodes by Ag substitution, J. Mater. Chem. A, 8, 8862, 10.1039/D0TA02042G Wen, 2017, Boosting efficiency and stability of a Cu2ZnSnS4 photocathode by alloying Ge and increasing sulfur pressure simultaneously, Nano Energy, 41, 18, 10.1016/j.nanoen.2017.09.006 Huang, 2018, Over 1% efficient unbiased stable solar water splitting based on a sprayed Cu2ZnSnS4 photocathode protected by a HfO2 photocorrosion-resistant film, ACS Energy Lett., 3, 1875, 10.1021/acsenergylett.8b01005 Nguyen, 2018, Structural and solar cell properties of an Ag-containing Cu2ZnSnS4 thin film derived from spray pyrolysis, ACS Appl. Mater. Interfaces, 10, 5455, 10.1021/acsami.7b14929 Huang, 2018, The role of Ag in aqueous solution processed (Ag, Cu)2ZnSn(S, Se)4 kesterite solar cells: antisite defect elimination and importance of Na passivation, J. Mater. Chem. A, 6, 15170, 10.1039/C8TA02950D Wang, 2019, Environmentally friendly Cu2ZnSnS4-based photocathode modified with a ZnS protection layer for efficient solar water splitting, J. Colloid Interface Sci., 536, 9, 10.1016/j.jcis.2018.10.032 Huang, 2021, 3.17% efficient Cu2ZnSnS4-BiVO4 integrated tandem cell for standalone overall solar water splitting, Energy Environ. Sci., 14, 1480, 10.1039/D0EE03892J Ikeda, 2022, Effects of incorporation of Ag into a kesterite Cu2ZnSnS4 thin film on its photoelectrochemical properties for water reduction, Phys. Chem. Chem. Phys., 24, 468, 10.1039/D1CP04075H Jiang, 2015, Ikeda, Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation, J. Am. Chem. Soc., 137, 13691, 10.1021/jacs.5b09015 F. Jiang, S. Li, C. Ozaki, T. Harada, S. Ikeda, Co-Electrodeposited Cu2ZnSnS4 Thin Film Solar Cell and Cu2ZnSnS4 Solar Cell - BiVO4 Tandem Device for Unbiased Solar Water Splitting, Sol. RRL2 (3) (2018)1700205, https://doi.org/10.1002/solr.201700205. Ikeda, 2021, Copper-based kesterite thin films for photoelectrochemical water splitting, High Temp. Mater. Processes, 40, 446, 10.1515/htmp-2021-0050 Wang, 2016, Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting, J. Alloys Comp., 688, 923, 10.1016/j.jallcom.2016.07.012 Paier, 2009, Cu2ZnSnS4 as a potential photovoltaic material: a hybrid Hartree-Fock density functional theory study, Phys. Rev. B, 79, 10.1103/PhysRevB.79.115126 S. Chen, X.G. Gong, A. Walsh, S.-H. Wei, Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: first-principles insights, Appl. Phys. Lett. 94 (2009) 041903, https://doi.org/10.1063/1.3074499. Wolf, 2014, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance, J. Phys. Chem. Lett., 5, 1035, 10.1021/jz500279b Gong, 2022, Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells, Nat, Energy, 7, 966 Kumar, 2015, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cell, Energy Environ. Sci., 8, 3134, 10.1039/C5EE02153G Wang, 2018, The effects of SnS2 secondary phases on Cu2ZnSnS4 solar cells: a promising mechanical exfoliation method for its removal, J. Mater. Chem. A, 6, 2995, 10.1039/C7TA08242H Nguyen, 2015, Cu2ZnSnS4 thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique, RSC Adv., 5, 77565, 10.1039/C5RA13000J Ge, 2016, Improved Performance of Electroplated CZTS Thin-Film Solar Cells with Bifacial Configuration, ChemSusChem, 9, 2149, 10.1002/cssc.201600440 Sun, 2018, Efficiency Enhancement of Kesterite Cu2ZnSnS4 Solar Cells via Solution-Processed Ultrathin Tin Oxide Intermediate Layer at Absorber/Buffer Interface, ACS Appl. Energy Mater., 1, 154, 10.1021/acsaem.7b00044 Zhuk, 2017, Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance, Sol. Energy Mater. Sol. Cells, 171, 239, 10.1016/j.solmat.2017.05.064 Khemiri, 2020, Properties of thermally evaporated CZTS thin films and numerical simulation of earth abundant and non toxic CZTS/Zn(S, O) based solar cells, Sol. Energy, 207, 496, 10.1016/j.solener.2020.06.114 Yang, 2019, Flexible Cu2ZnSn(S, Se)4 solar cells with over 10% efficiency and methods of enlarging the cell area, Nat. Commun., 10, 2959, 10.1038/s41467-019-10890-x Hreid, 2015, Effects of metal ion concentration on electrodeposited CuZnSn film and its application in kesterite Cu2ZnSnS4 solar cells, RSC Adv., 5, 65114, 10.1039/C5RA09966H Li, 2015, The effect of ZnS segregation on Zn-rich CZTS thin film solar cells, J. Alloys Comp., 632, 178, 10.1016/j.jallcom.2015.01.205 R. R. Thankalekshmi, N. K. Sidhu,A. C. Rastogi, Non-Vacuum Single Step Synthesis of Large-Grain Size CZTS Photo Absorber for Thin Film Solar Cells by Flux Assisted Chemical Spray, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, 3279-3284, https://doi.org/10.1109/PVSC.2017.8520926. M. Dimitrievska, A. Fairbrother, X. Fontané, T. Jawhari, V. Izquierdo-Roca1, E. Saucedo, A. Pérez-Rodríguez, Multiwavelength excitation Raman scattering study of polycrystalline kesterite Cu2ZnSnS4 thin films, Appl. Phys. Lett. 104 (2014) 021901, https://doi.org/10.1063/1.4861593.