Fabrication of BaTiO3 nanoparticles and its formation mechanism using the high temperature mixing method under hydrothermal conditions

Advanced Powder Technology - Tập 25 - Trang 853-858 - 2014
Yang Cao1,2, Kongjun Zhu1, Jinsong Liu3, Jinhao Qiu1
1State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Center for Interdisciplinary Research, Tohoku University, Sendai, Miyagi 980-8578, Japan
3College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Tài liệu tham khảo

Pithan, 2005, Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC, Int. J. Appl. Ceram. Technol., 2, 1, 10.1111/j.1744-7402.2005.02008.x Kim, 2004, Structural study of nano BaTiO3 powder by Rietveld refinement, Mater. Res. Bull., 39, 1045, 10.1016/j.materresbull.2004.03.001 Lee, 2012, Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method, J. Am. Ceram. Soc., 95, 2429, 10.1111/j.1551-2916.2012.05085.x Zheng, 2013, Preparation and characterization of monodispersed BaTiO3 nanocrystals by sol–hydrothermal method, J. Cryst. Growth, 363, 300, 10.1016/j.jcrysgro.2012.11.019 Ashiri, 2011, A modified method for barium titanate nanoparticles synthesis, Mater. Res. Bull., 46, 2291, 10.1016/j.materresbull.2011.08.055 Hu, 2000, Homogeneous (co) precipitation of inorganic salts for synthesis of monodispersed barium titanate particles, J. Mater. Sci., 35, 2927, 10.1023/A:1004718508280 Ma, 1997, Synthesis of tetragonal BaTiO3 by microwave heating and conventional heating, Chem. Mater., 9, 3023, 10.1021/cm970371n Schneller, 2011, Nanocomposite thin films for miniaturized multi-layer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions, J. Mater. Chem., 21, 7953, 10.1039/c1jm10607d Song, 2012, Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites, J. Mater. Chem., 22, 8063, 10.1039/c2jm30297g Swaminathan, 2010, Microwave synthesis of noncentrosymmetric BaTiO3 truncated nanocubes for charge storage applications, ACS Appl. Mater. Interf., 2, 3037, 10.1021/am1004865 Suzuki, 2013, Synthesis of highly strained mesostructured SrTiO3/BaTiO3 composite films with robust ferroelectricity, Chem. Eur. J., 19, 4446, 10.1002/chem.201203421 Seeharaj, 2013, Barium zirconate titanate nanoparticles synthesized by the sonochemical method, Ceram. Int., 39, S559, 10.1016/j.ceramint.2012.10.135 Bai, 2010, Synthesis of (K, Na)NbO3 particles by high temperature mixing method under hydrothermal conditions, Mater. Lett., 64, 77, 10.1016/j.matlet.2009.10.013 Zhu, 2012, Hydrothermal synthesis of sodium niobate with controllable shape and structure, Cryst. Eng. Commun., 14, 411, 10.1039/C1CE06100C Liu, 2013, Ultra-long VO2 (A) nanorods using the high-temperature mixing method under hydrothermal conditions: synthesis, evolution and thermochromic properties, Cryst. Eng. Commun., 15, 2753, 10.1039/c3ce27085h Gu, 2012, Characterization and synthesis of KTa0.1Nb0.9O3 particles via high temperature mixing method under hydrothermal conditions, Adv. Powder Technol., 23, 558, 10.1016/j.apt.2011.06.001 Choi, 1999, BaTiO3 particles prepared by microwave-assisted hydrothermal reaction using titanium acylate precursors, Mater. Lett., 41, 122, 10.1016/S0167-577X(99)00117-2 Lencka, 1995, Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-Earth titanates, Chem. Mater., 7, 18, 10.1021/cm00049a006 Cao, 2012, Sol–gel processing and characterization of potassium niobate nano-powders by an EDTA/citrate complexing method, Solid State Sci., 14, 655, 10.1016/j.solidstatesciences.2012.03.011 Vivekanandan, 1987, Hydrothermal preparation of Ba(Ti, Zr)O3 fine powders, Mater. Res. Bull., 22, 99, 10.1016/0025-5408(87)90156-5 Ng, 1996, The crystallization of biological macromolecules from precipitates: evidence for Ostwald ripening, J. Cryst. Growth, 168, 50, 10.1016/0022-0248(96)00362-4 Boistelle, 1988, Crystallization mechanisms in solution, J. Cryst. Growth, 90, 14, 10.1016/0022-0248(88)90294-1 Wada, 1995, The Effect of the particle sizes and the correlational sizes of dipoles introduced by the lattice defects on the crystal structure of barium titanate fine particles, Jpn. J. Appl. Phys., 34, 5368, 10.1143/JJAP.34.5368 Wada, 1996, Role of lattice defects in the size effects of barium titanate fine particles: a new model, J. Ceram. Soc. Jpn., 104, 383, 10.2109/jcersj.104.383 Uchino, 1989, Dependence of crystal structure on the particle size in barium titanate, J. Am. Ceram. Soc., 72, 1555, 10.1111/j.1151-2916.1989.tb07706.x Asiaie, 1996, Characterization of submicron particles of tetragonal BaTiO3, Chem. Mater., 8, 226, 10.1021/cm950327c Moreira, 2008, Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO3 nanoparticles, Chem. Mater., 20, 5381, 10.1021/cm801638d Robins, 1994, Investigation of the structure of barium titanate thin films by Raman spectroscopy, J. Appl. Phys., 76, 7487, 10.1063/1.357978 Joshi, 2006, Surfactant-rree hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation, J. Phys. Chem. B, 110, 12249, 10.1021/jp0600110