Fabrication of 3D Porous Graphene@SnO2 Aerogel via In Situ Gamma Ray Irradiation Induced Self-Assembly
Tóm tắt
A environmentally-friendly and facile approach for the fabrication of graphene nano-sheets decorated with SnO2 composite aerogel (GA@SnO2) has been developed by γ-ray irradiation induced self-assembly under the protection of N2 gas at room temperature. The graphene oxide (GO) and Sn2+ ions are simultaneously reduced and oxidized respectively by the electrons and hydroxyl radical generated from the radiolysis of water. Reduction and oxidation effects were confirmed. SnO2 nanoparticles with an average diameter of 3–5 nm were uniformly dispersed on the surface of graphene sheets in GA@SnO2. A possible formation process was also proposed. Stannous ions were oxidized to SnO2 and promoted the reduction of GO to graphene as well in one-step.
Tài liệu tham khảo
K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science (Washington, DC, U. S.) 306, 666 (2004). https://doi.org/10.1126/science.1102896
A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007). https://doi.org/10.1142/9789814287005_0002
K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science (Washington, DC, U. S.) 324, 1530 (2009). https://doi.org/10.1126/science.1102896
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science (Washington, DC, U. S.) 321, 385 (2008). https://doi.org/10.1126/science.1157996
A. A. Balandin, S. Ghosh, W. Z. Bao, et al., Nano Lett. 8, 902 (2008). https://doi.org/10.1021/nl0731872
M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev. 110, 132 (2009). https://doi.org/10.1021/cr900070d
S. Pei, J. Zhao, J. Du, et al., Carbon 48, 4466 (2010). https://doi.org/10.1016/j.carbon.2010.08.006
S. M. Paek, E. Yoo, and I. Honma, Nano Lett. 9, 725 (2008). https://doi.org/10.1021/nl802484w
J. Yao, X. Shen, B. Wang, et al., Electrochem. Commun. 11, 1849 (2009). https://doi.org/10.1002/chem.200903263
S. K. Park, S. H. Yu, N. Pinna, et al., J. Phys. Chem. C 22, 2520 (2012). https://doi.org/10.1021/jp2003276
Z. Du, X. Yin, M. Zhang, et al., Mater. Lett. 64, 2076 (2010). https://doi.org/10.1016/j.matlet.2010.06.039
D. Wang, R. Kou, D. Choi, et al., ACS Nano 4, 1587 (2010). https://doi.org/10.1021/nn901819n
M. Zhang, D. Lei, Z. Du, et al., J. Mater. Chem. 21, 1673 (2011). https://doi.org/10.1039/c0jm00638f
C. Chen, L. Wang, Y. Liu, et al., Chem. Rev. 29, 4111 (2013). https://doi.org/10.1021/cr2004508
J. L. Marignier, J. Belloni, M. O. Delcourt, and J. P. Chevalier, Nature (London, U.K.) 317, 344 (1985). https://doi.org/10.1038/317344a0
M. E. Meyre, M. Treguer-Delapierre, and C. Faure, Langmuir 24, 4421 (2008). https://doi.org/10.1021/la703650d
J. Belloni, M. Mostafavi, H. Remita, et al., New J. Chem. 22, 1239 (1998). https://doi.org/10.1039/a801445k
Y. Hu, J. Chen, X. Xue, et al., Inorg. Chem. 44, 7280 (2005). https://doi.org/10.1021/ic050909o
Z. Hai, C. Zhu, J. Huang, et al., Inorg. Chem. 49, 7217 (2010). https://doi.org/10.1021/ic101143u
Y. Zhang, H. L. Ma, Q. Zhang, et al., J. Mater. Chem. 22, 13064 (2012). https://doi.org/10.1039/C2TC00078D
B. Zhang, L. Li, Z. Wang, et al., J. Mater. Chem. 22, 7775 (2012). https://doi.org/10.1039/C2JM16722K
L. Jing, H. Zhong, H. Liu, et al., J. Mater. Chem. 2, 2934 (2014). https://doi.org/10.1039/C2JM33606E
C. H. Xue, R. Wang, J. S. Zhang, et al., Cryst. Growth. Des. 177, 76 (2016). https://doi.org/10.1021/cg800596z
Q. Zhao, Y. Xie, T. Dong, et al., J. Phys. Chem. 111, 11598 (2007). https://doi.org/10.1021/jp072858h