Fabrication and properties of 1–3 connectivity epoxy resin modified cement based piezoelectric composite

Journal of Electroceramics - Tập 48 - Trang 67-73 - 2021
Yan Hu1, Haoran Li2, Peng Liu1, Dongyu Xu2,3
1School of Civil Engineering, Central South University, Changsha, China
2Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, China
3Scholl of Civil Engineering and Architecture, Linyi University, Linyi, China

Tóm tắt

The 1–3 connectivity epoxy resin modified cement based piezoelectric composites were developed to meet the requirement of concrete structural heath monitoring. The piezoelectric ceramic volume fraction on piezoelectric, dielectric and electromechanical coupling properties of the composites were discussed. The results showed that the relative permittivity of the piezoelectric composites increases linearly with increasing the PZT piezoelectric ceramic volume fraction, but the dielectric loss of the piezoelectric composites is a little bit larger than that of the PZT ceramic. The piezoelectric strain constant d33 of the piezoelectric composites is mainly contributed by PZT ceramic and is in proportion to PZT volume fraction, however, the piezoelectric voltage constant $${g}_{33}$$ show the opposite variation. When PZT volume fraction decreases to 27.7%, $${g}_{33}$$ value of the piezoelectric composites reaches to 75.0 (mV)·m·N−1. When PZT ceramic volume fraction is 62.33%, the thickness electromechanical coupling coefficient kt of the piezoelectric composites is the largest of 66.73%. The acoustic impedance Z of the piezoelectric composite is close to that of the concrete when PZT ceramic volume fraction is less than 44.44%.

Tài liệu tham khảo

C.K. Soh, K.H. Tseng, S. Bhalla, A. Gupta, Performance of smart piezoceramic patches in health monitoring of a RC bridge. Smart. Mater. Struct. 9(4), 533 (2000) G. Park, C.R. Farrar, F.L. di Scalea, S. Coccia, Performance assessment and validation of piezoelectric active-sensors in structural health monitoring. Smart Mater. Struct. 15(6), 1673 (2006) D.G. Aggelis, E.Z. Kordatos, M. Strantza, D.V. Soulioti, T.E. Matikas, NDT approach for characterization of subsurface cracks in concrete. Constr. Build. Mater. 25(7), 3089–3097 (2011) B.S. Divsholi, Y.W. Yang, Combined embedded and surface-bonded piezoelectric transducers for monitoring of concrete structures. NDT. E. Int. 65, 28–34 (2014) S.H. Kee, J.Y. Zhu, Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete. Smart. Mater. Struct. 22, 115016 (2013) D.S. Wang, H.P. Zhu, Monitoring of the strength gain of concrete using embedded PZT impedance transducer. Constr. Build. Mater. 25(9), 3703–3708 (2011) D.G. Aggelis, S. Momoki, T. Shiotanic, Experimental study of nonlinear wave parameters in mortar. Constr. Build. Mater. 47, 1409–1413 (2013) D.Y. Xu, X. Cheng, S. Banerjee, S.F. Huang, Dielectric and electromechanical properties of modified cement/polymer based 1–3 connectivity piezoelectric composites containing inorganic fillers. Comp. Sci. Technol. 114, 72–78 (2015) H.C. Gu, Y. Moslehy, D. Sanders, G.B. Song, Y.L. Mo, Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations. Smart. Mater. Struct. 19(6), 065026 (2010) J.C. Wang, C. Zhong, S.H. Hao, L.K. Wang, Design and properties analysis of novel modified 1–3 piezoelectric composite. Materials. 14(7), 1749 (2021) X.H. Mi, L. Qin, Q.W. Liao, L.K. Wang, Electromechanical coupling coefficient and acoustic impedance of 1-1-3 piezoelectric composites. Ceram. Int. 43(9), 7374–7377 (2017) C.M. Zhou, J.L. Zhang, D.K. Liu, Z. Zhang, Novel 1–3 (K, Na)NbO3-based ceramic/epoxy composites with large thickness-mode electromechanical coupling coefficient and good temperature stability. Ceram. Int. 47(4), 4643–4647 (2021) R. Pramanik, A. Arockiarajan, Experimental and theoretical studies on mechanical creep of 1–3 piezocomposites. Acta. Mech. 229, 4187–4198 (2018) Z.J. Li, D. Zhang, K.R. Wu, Cement-based 0–3 piezoelectric composites. J. Am. Ceram. Soc. 85(2), 305–313 (2002) B.Q. Dong, Z.J. Li, Cement-based piezoelectric ceramic smart composites. Compos. Sci. Technol. 65(9), 1363–1371 (2005) B.Q. Dong, Y.Q. Liu, L. Qin, Y.C. Wang, Y. Fang, F. Xing, X.C. Chen, In situ stress monitoring of the concrete beam under static loading with cement-based piezoelectric sensors. Nondestruct. Test. Eval. 30(4), 312–326 (2015) J. Sun, P. Ngernchuklin, M. Vittadello, E.K. Akdoğan, A. Safari, Development of 2–2 piezoelectric ceramic/polymer composites by direct-write technique. J. Electroceram. 24(3), 219–225 (2010) Z.F. Shi, J.J. Wang, Dynamic analysis of 2–2 cement–based piezoelectric transducers. J. Intell. Mater. Syst. Struct. 24(1), 99–107 (2012) K.H. Lam, H.L.W. Chan, Piezoelectric cement-based 1–3 composites. Appl. Phys. A. 81(7), 1451–1454 (2005) A. Chaipanich, R. Rianyoi, R. Potong, N. Jaitanongb, Aging of 0–3 piezoelectric PZT ceramic–Portland cement composites. Ceram. Int. 40(8), 13579–13584 (2014) R. Rianyoi, R. Potong, A. Ngamjarurojana, R. Yimnirun, R. Guo, A.S. Bhalla, A. Chaipanich, Acoustic dielectric and piezoelectric properties of 1–3 connectivity barium titanate-Portland cement composites. Ferroelectrics 452(1), 76–83 (2013) H.H. Pan, C.K. Wang, M. Tia, Y.M. Su, Influence of water-to-cement ratio on piezoelectric properties of cement-based composites containing PZT particles. Constr. Build. Mater. 239, 117858 (2020) H.H. Pan, R.H. Yang, Y.C. Cheng, High piezoelectric properties of cement piezoelectric composites containing kaolin. Proc. SPIE. 9437, 94370R-R94371 (2015) D.Y. Xu, X. Cheng, S.F. Huang, M.H. Jiang, Electromechanical properties of 2–2 cement based piezoelectric composite. Curr. Appl. Phys. 9(4), 816–819 (2009) D.Y. Xu, X. Cheng, S. Banerjee, L. Wang, S.F. Huang, Dielectric piezoelectric and damping properties of novel 2–2 piezoelectric composites. Smart. Mater. Struct. 24(2), 025003 (2015) G.B. Song, V. Sethi, H.-N. Li, Vibration control of civil structures using piezoceramic smart materials: A review. Eng. Struct. 28(11), 1513–1524 (2006) G.B. Song, H.C. Gu, Y.L. Mo, Smart aggregates: multi-functional sensors for concrete structures-a tutorial and a review. Smart. Mater. Struct. 17(3), 033001 (2008) G.B. Song, W.J. Li, B. Wang, S.C.M. Ho, A review of rock bolt monitoring using smart sensors. Sensors. 17(4), 776 (2017) Q.Z. Kong, G.B. Song, A comparative study of the very early age cement hydration monitoring using compressive and shear mode smart aggregates. IEEE. Sens. J. 17(2), 256–260 (2017) Q.Z. Kong, S. Hou, Q. Ji, Y.L. Mo, G.B. Song, Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates. Smart. Mater. Struct. 22(8), 085025 (2013) W.J. Li, Q.Z. Kong, S.C.M. Ho, I. Lim, Y.L. Mo, G.B. Song, Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures. Smart. Mater. Struct. 25, 115031 (2016) R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composite. Mater. Res. Bull. 13(5), 525–536 (1978) T.R. Gururaja, W.A. Schulze, L.E. Cross, R.E. Newnham, B.A. Auld, Y.J. Wang, Piezoelectric Composite Materials for Ultrasonic Transducer Applications Part I: Resonant Modes of Vibration of PZT Rod-Polymer Composites. IEEE. Trans. Ultrason. Ferr. 32(4), 481–498 (1985) A.H. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, F. Welsh, IEEE Standard on Piezoelectricity “ANSI/IEEE Std 176–1987” (The Institute of Electrical and Electronics Engineers Inc, USA, 1987), p. 227