Fabrication and characterization of supported dual acidic ionic liquids for polymer electrolyte membrane fuel cell applications

Arabian Journal of Chemistry - Tập 12 - Trang 1011-1023 - 2019
Masoumeh Zakeri1, Ebrahim Abouzari-Lotf2,3, Mohamed Mahmoud Nasef2,4, Arshad Ahmad2,3, Mikio Miyake1, Teo Ming Ting5, Paveswari Sithambaranathan2,3
1Malaysia–Japan International Institute of Technology, Universiti Teknolog Malaysia, 54100 Kuala Lumpur, Malaysia
2Advanced Materials Research Group, Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
3Department of Chemical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
4Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
5Radiation Processing Technology Division, Malaysian Nuclear Agency, 4300 Kajang, Selangor, Malaysia

Tài liệu tham khảo

Abouzari-Lotf, E., Etesami, M., Nasef, M.M., 2018. Carbon-based nanocomposite proton exchange membranes for fuel cells. In: Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications. Elsevier, pp. 437–461. 10.1016/B978-0-12-813574-7.00018-6. Abouzari-Lotf, 2016, Phosphonated polyimides: enhancement of proton conductivity at high temperatures and low humidity, J. Membr. Sci., 516, 74, 10.1016/j.memsci.2016.06.009 Abouzari-lotf, 2017, Phase separated nanofibrous anion exchange membranes with polycationic side chains, J. Mater. Chem. A, 5, 15326, 10.1039/C7TA03967K Abouzari-lotf, 2016, Enhancement of fuel cell performance with less-water dependent composite membranes having polyoxometalate anchored nanofibrous interlayer, J. Power Sources, 326, 10.1016/j.jpowsour.2016.07.027 Abouzari-lotf, E., Nasef, M.M., Zakeri, M., Ahmad, A., Ripin, A., 2017b. Composite membranes based on heteropolyacids and their applications in fuel cells. In: Organic-Inorganic Composite Polymer Electrolyte Membranes. Springer International Publishing, Cham, pp. 99–131. 10.1007/978-3-319-52739-0_5. Assumma, 2015, Synthesis of partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions, J. Polym. Sci. Part A Polym. Chem., 53, 1941, 10.1002/pola.27650 Che, 2015, Methylimidazolium group – Modified polyvinyl chloride (PVC) doped with phosphoric acid for high temperature proton exchange membranes, Mater. Des., 87, 1047, 10.1016/j.matdes.2015.08.092 Che, 2015, Fabrication and characterization of phosphoric acid doped imidazolium ionic liquid polymer composite membranes, J. Mol. Liq., 206, 10, 10.1016/j.molliq.2015.01.054 Chen, 2018, High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metal-organic framework impregnated with binary ionic liquids: synthesis, characteristic and effect of anion, J. Power Sources, 376, 168, 10.1016/j.jpowsour.2017.11.089 Diaz, 2014, Progress in the use of ionic liquids as electrolyte membranes in fuel cells, J. Membr. Sci., 469, 379, 10.1016/j.memsci.2014.06.033 Díaz, 2014, Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes, Int. J. Hydrogen Energy, 39, 3970, 10.1016/j.ijhydene.2013.04.155 Fang, 2015, Synthesis and performance of novel anion exchange membranes based on imidazolium ionic liquids for alkaline fuel cell applications, J. Power Sources, 284, 517, 10.1016/j.jpowsour.2015.03.065 Fernicola, 2006, Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices, Ionics (Kiel), 12, 95, 10.1007/s11581-006-0023-5 Gajos, 2016, Electron-beam lithographic grafting of functional polymer structures from fluoropolymer substrates, Langmuir, 32, 10641, 10.1021/acs.langmuir.6b02808 Gold, S.A., 2017. Low-temperature fuel cell technology for green energy. In: Handbook of Climate Change Mitigation and Adaptation. Springer International Publishing, Cham, pp. 3039–3085. 10.1007/978-3-319-14409-2_43. Gong, 2017, Facile synthesis and the properties of novel cardo poly(arylene ether sulfone)s with pendent cycloaminium side chains as anion exchange membranes, Polym. Chem., 8, 4207, 10.1039/C7PY00690J Gubler, 2014, Polymer design strategies for radiation-grafted fuel cell membranes, Adv. Energy Mater., 4, 10.1002/aenm.201300827 Guerreiro da Trindade, 2016, Modification of sulfonated poly(ether ether ketone) membranes by impregnation with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate for proton exchange membrane fuel cell applications, Polym. Eng. Sci., 56, 1037, 10.1002/pen.24334 Güler, 2018, Characterization and fuel cell performance of divinylbenzene crosslinked phosphoric acid doped membranes based on 4-vinylpyridine grafting onto poly(ethylene-co-tetrafluoroethylene) films, Int. J. Hydrogen Energy, 43, 8088, 10.1016/j.ijhydene.2018.03.087 Hu, 2017, Improving the overall characteristics of proton exchange membranes via nanophase separation technologies: a progress review, Fuel Cells, 17, 3, 10.1002/fuce.201600172 Ishioka, 2014, Supramolecular gelators based on benzenetricarboxamides for ionic liquids, Soft Matter, 10, 965, 10.1039/C3SM52363B Jothi, 2014, An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium, J. Membr. Sci., 450, 389, 10.1016/j.memsci.2013.09.034 Kataoka, 2015, Highly conductive ionic-liquid gels prepared with orthogonal double networks of a low-molecular-weight gelator and cross-linked polymer, ACS Appl. Mater. Interfaces, 7, 23346, 10.1021/acsami.5b07981 Kim, 2015, A review of polymer -nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 21, 36, 10.1016/j.jiec.2014.04.030 Kim, 2004, Polymer-supported ionic liquids: imidazolium salts as catalysts for nucleophilic substitution reactions including fluorinations, Angew. Chemie – Int. Ed., 43, 483, 10.1002/anie.200352760 Kim, 2010, New sulfonic acid moiety grafted on montmorillonite as filler of organic-inorganic composite membrane for non-humidified proton-exchange membrane fuel cells, J. Power Sources, 195, 4653, 10.1016/j.jpowsour.2010.01.087 Kreuer, 2001, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci., 185, 29, 10.1016/S0376-7388(00)00632-3 Kurane, 2013, Synergistic catalysis by an aerogel supported ionic liquid phase (ASILP) in the synthesis of 1,5-benzodiazepines, Green Chem., 15, 1849, 10.1039/c3gc40592c MacFarlane, 2014, Energy applications of ionic liquids, Energy Environ. Sci., 7, 232, 10.1039/C3EE42099J Madden, T., Perry, M., Protsailo, L., Gummalla, M., Burlatsky, S., Cipollini, N., Motupally, S., Jarvi, T., 2010. Proton exchange membrane fuel cell degradation: mechanisms and recent progress. In: Handbook of Fuel Cells. John Wiley & Sons, Ltd, Chichester, UK. 10.1002/9780470974001.f500057. Mecerreyes, 2011, Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes, Prog. Polym. Sci., 36, 1629, 10.1016/j.progpolymsci.2011.05.007 Miyake, 2017, Fluorine-free sulfonated aromatic polymers as proton exchange membranes, Polym. J., 49, 487, 10.1038/pj.2017.11 Nasef, 2014, Radiation-grafted membranes for polymer electrolyte fuel cells: current trends and future directions, Chem. Rev., 114, 12278, 10.1021/cr4005499 Nasef, 2017, Electrospinning of poly(vinylpyrrodine) template for formation of ZrO2 nanoclusters for enhancing properties of composite proton conducting membranes, Int. J. Polym. Mater. Polym. Biomater., 66, 289, 10.1080/00914037.2016.1201829 Nasef, 2016, Enhancement of performance of pyridine modified polybenzimidazole fuel cell membranes using zirconium oxide nanoclusters and optimized phosphoric acid doping level, Int. J. Hydrogen Energy, 41, 6842, 10.1016/j.ijhydene.2016.03.022 Osada, 2016, Ionic-liquid-based polymer electrolytes for battery applications, Angew. Chemie Int. Ed., 55, 500, 10.1002/anie.201504971 Park, 2006, Covalent modification of multiwalled carbon nanotubes with imidazolium-based ionic liquids: effect of anions on solubility, Chem. Mater., 18, 1546, 10.1021/cm0511421 Ponce-González, 2016, High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes, Energy Environ. Sci., 9, 3724, 10.1039/C6EE01958G Quartarone, 2017, Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review, Materials (Basel), 10, 687, 10.3390/ma10070687 Rhoades, 2016, Thermal, mechanical and conductive properties of imidazolium-containing thiol-ene poly(ionic liquid) networks, Polymer (Guildf), 100, 1, 10.1016/j.polymer.2016.08.010 Schultz, 2003, Air pollution and climate-forcing impacts of a global hydrogen economy, Science (80-.), 302, 624, 10.1126/science.1089527 Sekhon, 2006, Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells, J. Mater. Chem., 16, 2256, 10.1039/b602280d Sproll, 2018, Effect of glycidyl methacrylate (GMA) incorporation on water uptake and conductivity of proton exchange membranes, Radiat. Phys. Chem., 144, 276, 10.1016/j.radphyschem.2017.08.025 Su, 2013, Nanocarbons for the development of advanced catalysts, Chem. Rev., 113, 5782, 10.1021/cr300367d Tan, 2010, Synthesis and properties of sulfonated polybenzothiazoles with benzimidazole moieties as proton exchange membranes, J. Membr. Sci., 356, 70, 10.1016/j.memsci.2010.03.028 Uragami, 2016, Selective removal of dilute benzene from water by poly(methyl methacrylate)-graft-poly(dimethylsiloxane) membranes containing hydrophobic ionic liquid by pervaporation, J. Membr. Sci., 510, 131, 10.1016/j.memsci.2016.01.057 Valkenberg, 2002, Immobilisation of ionic liquids on solid supports, Green Chem., 4, 88, 10.1039/b107946h Wang, 2016, Recent development of ionic liquid membranes, Green Energy Environ., 1, 43, 10.1016/j.gee.2016.05.002 Wojnarowska, 2014, Conductivity mechanism in polymerized imidazolium-based protic ionic liquid [HSO3–BVIm][OTf]: dielectric relaxation studies, Macromolecules, 47, 4056, 10.1021/ma5003479 Wu, 2016, Constructing ionic liquid-filled proton transfer channels within nanocomposite membrane by using functionalized graphene oxide, ACS Appl. Mater. Interfaces, 8, 588, 10.1021/acsami.5b09642 Xin, 2014, Imidazolium-based ionic liquids grafted on solid surfaces, Chem. Soc. Rev., 43, 7171, 10.1039/C4CS00172A Yamamoto, 2008, XPS-depth analysis using C 60 ion sputtering of buried interface in plasma-treated ethylene-tetrafluoroethylene-copolymer (ETFE) film, Surf. Interface Anal., 40, 1631, 10.1002/sia.2884 Yasuda, 2012, Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications, ACS Appl. Mater. Interfaces, 4, 1783, 10.1021/am300031k Ye, 2013, Ionic liquid polymer electrolytes, J. Mater. Chem. A, 1, 2719, 10.1039/C2TA00126H Zakeri, 2018, Preparation and characterization of highly stable protic-ionic-liquid membranes, Int. J. Hydrogen Energy Zhang, 2012, Recent advances in proton exchange membranes for fuel cell applications, Chem. Eng. J., 204–206, 87, 10.1016/j.cej.2012.07.103 Zhang, 2015, Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement, Energy Technol., 3, 675, 10.1002/ente.201500028 Zheng, 2017, Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells, Nat. Commun., 8, 418, 10.1038/s41467-017-00507-6 Zhu, X., Liu, Y., Zhu, L., 2008. Polymer composites for high-temperature proton-exchange membrane fuel cells. In: Polymer Membranes for Fuel Cells. Springer US, Boston, MA, pp. 1–26. 10.1007/978-0-387-73532-0_7. Zhuo, 2015, Enhancement of hydroxide conductivity by grafting flexible pendant imidazolium groups into poly(arylene ether sulfone) as anion exchange membranes, J. Mater. Chem. A, 3, 18105, 10.1039/C5TA04257G