Fabrication and characterization of supported dual acidic ionic liquids for polymer electrolyte membrane fuel cell applications
Tài liệu tham khảo
Abouzari-Lotf, E., Etesami, M., Nasef, M.M., 2018. Carbon-based nanocomposite proton exchange membranes for fuel cells. In: Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications. Elsevier, pp. 437–461. 10.1016/B978-0-12-813574-7.00018-6.
Abouzari-Lotf, 2016, Phosphonated polyimides: enhancement of proton conductivity at high temperatures and low humidity, J. Membr. Sci., 516, 74, 10.1016/j.memsci.2016.06.009
Abouzari-lotf, 2017, Phase separated nanofibrous anion exchange membranes with polycationic side chains, J. Mater. Chem. A, 5, 15326, 10.1039/C7TA03967K
Abouzari-lotf, 2016, Enhancement of fuel cell performance with less-water dependent composite membranes having polyoxometalate anchored nanofibrous interlayer, J. Power Sources, 326, 10.1016/j.jpowsour.2016.07.027
Abouzari-lotf, E., Nasef, M.M., Zakeri, M., Ahmad, A., Ripin, A., 2017b. Composite membranes based on heteropolyacids and their applications in fuel cells. In: Organic-Inorganic Composite Polymer Electrolyte Membranes. Springer International Publishing, Cham, pp. 99–131. 10.1007/978-3-319-52739-0_5.
Assumma, 2015, Synthesis of partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions, J. Polym. Sci. Part A Polym. Chem., 53, 1941, 10.1002/pola.27650
Che, 2015, Methylimidazolium group – Modified polyvinyl chloride (PVC) doped with phosphoric acid for high temperature proton exchange membranes, Mater. Des., 87, 1047, 10.1016/j.matdes.2015.08.092
Che, 2015, Fabrication and characterization of phosphoric acid doped imidazolium ionic liquid polymer composite membranes, J. Mol. Liq., 206, 10, 10.1016/j.molliq.2015.01.054
Chen, 2018, High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metal-organic framework impregnated with binary ionic liquids: synthesis, characteristic and effect of anion, J. Power Sources, 376, 168, 10.1016/j.jpowsour.2017.11.089
Diaz, 2014, Progress in the use of ionic liquids as electrolyte membranes in fuel cells, J. Membr. Sci., 469, 379, 10.1016/j.memsci.2014.06.033
Díaz, 2014, Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes, Int. J. Hydrogen Energy, 39, 3970, 10.1016/j.ijhydene.2013.04.155
Fang, 2015, Synthesis and performance of novel anion exchange membranes based on imidazolium ionic liquids for alkaline fuel cell applications, J. Power Sources, 284, 517, 10.1016/j.jpowsour.2015.03.065
Fernicola, 2006, Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices, Ionics (Kiel), 12, 95, 10.1007/s11581-006-0023-5
Gajos, 2016, Electron-beam lithographic grafting of functional polymer structures from fluoropolymer substrates, Langmuir, 32, 10641, 10.1021/acs.langmuir.6b02808
Gold, S.A., 2017. Low-temperature fuel cell technology for green energy. In: Handbook of Climate Change Mitigation and Adaptation. Springer International Publishing, Cham, pp. 3039–3085. 10.1007/978-3-319-14409-2_43.
Gong, 2017, Facile synthesis and the properties of novel cardo poly(arylene ether sulfone)s with pendent cycloaminium side chains as anion exchange membranes, Polym. Chem., 8, 4207, 10.1039/C7PY00690J
Gubler, 2014, Polymer design strategies for radiation-grafted fuel cell membranes, Adv. Energy Mater., 4, 10.1002/aenm.201300827
Guerreiro da Trindade, 2016, Modification of sulfonated poly(ether ether ketone) membranes by impregnation with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate for proton exchange membrane fuel cell applications, Polym. Eng. Sci., 56, 1037, 10.1002/pen.24334
Güler, 2018, Characterization and fuel cell performance of divinylbenzene crosslinked phosphoric acid doped membranes based on 4-vinylpyridine grafting onto poly(ethylene-co-tetrafluoroethylene) films, Int. J. Hydrogen Energy, 43, 8088, 10.1016/j.ijhydene.2018.03.087
Hu, 2017, Improving the overall characteristics of proton exchange membranes via nanophase separation technologies: a progress review, Fuel Cells, 17, 3, 10.1002/fuce.201600172
Ishioka, 2014, Supramolecular gelators based on benzenetricarboxamides for ionic liquids, Soft Matter, 10, 965, 10.1039/C3SM52363B
Jothi, 2014, An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium, J. Membr. Sci., 450, 389, 10.1016/j.memsci.2013.09.034
Kataoka, 2015, Highly conductive ionic-liquid gels prepared with orthogonal double networks of a low-molecular-weight gelator and cross-linked polymer, ACS Appl. Mater. Interfaces, 7, 23346, 10.1021/acsami.5b07981
Kim, 2015, A review of polymer -nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 21, 36, 10.1016/j.jiec.2014.04.030
Kim, 2004, Polymer-supported ionic liquids: imidazolium salts as catalysts for nucleophilic substitution reactions including fluorinations, Angew. Chemie – Int. Ed., 43, 483, 10.1002/anie.200352760
Kim, 2010, New sulfonic acid moiety grafted on montmorillonite as filler of organic-inorganic composite membrane for non-humidified proton-exchange membrane fuel cells, J. Power Sources, 195, 4653, 10.1016/j.jpowsour.2010.01.087
Kreuer, 2001, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci., 185, 29, 10.1016/S0376-7388(00)00632-3
Kurane, 2013, Synergistic catalysis by an aerogel supported ionic liquid phase (ASILP) in the synthesis of 1,5-benzodiazepines, Green Chem., 15, 1849, 10.1039/c3gc40592c
MacFarlane, 2014, Energy applications of ionic liquids, Energy Environ. Sci., 7, 232, 10.1039/C3EE42099J
Madden, T., Perry, M., Protsailo, L., Gummalla, M., Burlatsky, S., Cipollini, N., Motupally, S., Jarvi, T., 2010. Proton exchange membrane fuel cell degradation: mechanisms and recent progress. In: Handbook of Fuel Cells. John Wiley & Sons, Ltd, Chichester, UK. 10.1002/9780470974001.f500057.
Mecerreyes, 2011, Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes, Prog. Polym. Sci., 36, 1629, 10.1016/j.progpolymsci.2011.05.007
Miyake, 2017, Fluorine-free sulfonated aromatic polymers as proton exchange membranes, Polym. J., 49, 487, 10.1038/pj.2017.11
Nasef, 2014, Radiation-grafted membranes for polymer electrolyte fuel cells: current trends and future directions, Chem. Rev., 114, 12278, 10.1021/cr4005499
Nasef, 2017, Electrospinning of poly(vinylpyrrodine) template for formation of ZrO2 nanoclusters for enhancing properties of composite proton conducting membranes, Int. J. Polym. Mater. Polym. Biomater., 66, 289, 10.1080/00914037.2016.1201829
Nasef, 2016, Enhancement of performance of pyridine modified polybenzimidazole fuel cell membranes using zirconium oxide nanoclusters and optimized phosphoric acid doping level, Int. J. Hydrogen Energy, 41, 6842, 10.1016/j.ijhydene.2016.03.022
Osada, 2016, Ionic-liquid-based polymer electrolytes for battery applications, Angew. Chemie Int. Ed., 55, 500, 10.1002/anie.201504971
Park, 2006, Covalent modification of multiwalled carbon nanotubes with imidazolium-based ionic liquids: effect of anions on solubility, Chem. Mater., 18, 1546, 10.1021/cm0511421
Ponce-González, 2016, High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes, Energy Environ. Sci., 9, 3724, 10.1039/C6EE01958G
Quartarone, 2017, Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review, Materials (Basel), 10, 687, 10.3390/ma10070687
Rhoades, 2016, Thermal, mechanical and conductive properties of imidazolium-containing thiol-ene poly(ionic liquid) networks, Polymer (Guildf), 100, 1, 10.1016/j.polymer.2016.08.010
Schultz, 2003, Air pollution and climate-forcing impacts of a global hydrogen economy, Science (80-.), 302, 624, 10.1126/science.1089527
Sekhon, 2006, Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells, J. Mater. Chem., 16, 2256, 10.1039/b602280d
Sproll, 2018, Effect of glycidyl methacrylate (GMA) incorporation on water uptake and conductivity of proton exchange membranes, Radiat. Phys. Chem., 144, 276, 10.1016/j.radphyschem.2017.08.025
Su, 2013, Nanocarbons for the development of advanced catalysts, Chem. Rev., 113, 5782, 10.1021/cr300367d
Tan, 2010, Synthesis and properties of sulfonated polybenzothiazoles with benzimidazole moieties as proton exchange membranes, J. Membr. Sci., 356, 70, 10.1016/j.memsci.2010.03.028
Uragami, 2016, Selective removal of dilute benzene from water by poly(methyl methacrylate)-graft-poly(dimethylsiloxane) membranes containing hydrophobic ionic liquid by pervaporation, J. Membr. Sci., 510, 131, 10.1016/j.memsci.2016.01.057
Valkenberg, 2002, Immobilisation of ionic liquids on solid supports, Green Chem., 4, 88, 10.1039/b107946h
Wang, 2016, Recent development of ionic liquid membranes, Green Energy Environ., 1, 43, 10.1016/j.gee.2016.05.002
Wojnarowska, 2014, Conductivity mechanism in polymerized imidazolium-based protic ionic liquid [HSO3–BVIm][OTf]: dielectric relaxation studies, Macromolecules, 47, 4056, 10.1021/ma5003479
Wu, 2016, Constructing ionic liquid-filled proton transfer channels within nanocomposite membrane by using functionalized graphene oxide, ACS Appl. Mater. Interfaces, 8, 588, 10.1021/acsami.5b09642
Xin, 2014, Imidazolium-based ionic liquids grafted on solid surfaces, Chem. Soc. Rev., 43, 7171, 10.1039/C4CS00172A
Yamamoto, 2008, XPS-depth analysis using C 60 ion sputtering of buried interface in plasma-treated ethylene-tetrafluoroethylene-copolymer (ETFE) film, Surf. Interface Anal., 40, 1631, 10.1002/sia.2884
Yasuda, 2012, Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications, ACS Appl. Mater. Interfaces, 4, 1783, 10.1021/am300031k
Ye, 2013, Ionic liquid polymer electrolytes, J. Mater. Chem. A, 1, 2719, 10.1039/C2TA00126H
Zakeri, 2018, Preparation and characterization of highly stable protic-ionic-liquid membranes, Int. J. Hydrogen Energy
Zhang, 2012, Recent advances in proton exchange membranes for fuel cell applications, Chem. Eng. J., 204–206, 87, 10.1016/j.cej.2012.07.103
Zhang, 2015, Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement, Energy Technol., 3, 675, 10.1002/ente.201500028
Zheng, 2017, Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells, Nat. Commun., 8, 418, 10.1038/s41467-017-00507-6
Zhu, X., Liu, Y., Zhu, L., 2008. Polymer composites for high-temperature proton-exchange membrane fuel cells. In: Polymer Membranes for Fuel Cells. Springer US, Boston, MA, pp. 1–26. 10.1007/978-0-387-73532-0_7.
Zhuo, 2015, Enhancement of hydroxide conductivity by grafting flexible pendant imidazolium groups into poly(arylene ether sulfone) as anion exchange membranes, J. Mater. Chem. A, 3, 18105, 10.1039/C5TA04257G