Fabrication and characterization of TiO2: ZnO thin films as electron transport material in perovskite solar cell (PSC)
Tài liệu tham khảo
Diebold, 2003, The surface science of titanium dioxide, Surf. Sci. Rep., 48, 53, 10.1016/S0167-5729(02)00100-0
Chong, 2005, The structural and electrical properties of thermally grown TiO2 thin films, J. Phys. Condens. Matter, 18, 645, 10.1088/0953-8984/18/2/020
Wilk, 2001, High-κ gate dielectrics:Current status and materials properties considerations, Journal of applied physics, 89, 5243, 10.1063/1.1361065
Ismail, 2013, The structural and optical properties of ZnO thin films prepared at different RF sputtering power, J. King Saud Univ. Sci., 25, 209, 10.1016/j.jksus.2012.12.004
Suda, 2004, Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method, Thin solid films, 453, 162, 10.1016/j.tsf.2003.11.185
Kania, Aneta, W. Pilarczyk, and M.M. Szindler. Structure and corrosion behavior of TiO2 thin films deposited onto Mg-based alloy using magnetron sputtering and sol-gel, Thin Solid Films. 701 (2020) 137945. https://doi.org/10.3390/coatings11010070.
Barreca, 2007, TiO2 thin films by chemical vapor deposition:An XPS characterization, Surf. Sci. Spectra, 14, 27, 10.1116/11.20070902
Purica, 2002, Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD), Thin Solid Films, 403, 485, 10.1016/S0040-6090(01)01544-9
Kania, 2020, Structure and corrosion behavior of TiO2 thin films deposited onto Mg-based alloy using magnetron sputtering and sol-gel, Thin Solid Films, 701, 10.1016/j.tsf.2020.137945
Hussin, 2014, Fabrication of multilayer ZnO/TiO2/ZnO thin films with enhancement of optical properties by atomic layer deposition (ALD), Appl. Mech. Mater., 465, 916
Green, 2014, The emergence of perovskite solar cells, Nat. Photonics, 8, 506, 10.1038/nphoton.2014.134
Snaith, 2013, Henry, Perovskites:the emergence of a new era for low-cost, high-efficiency solar cells, J. Phys. Chem. Lett., 4, 3623, 10.1021/jz4020162
Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r
Noh, 2013, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett., 13, 1764, 10.1021/nl400349b
Kim, 2021, Development of perovskite solar cells with> 25% conversion efficiency, Joule, 5, 1033, 10.1016/j.joule.2021.04.008
Min, H. Lee, D.Y. Kim, J. Kim, G. Lee, K.S. Kim, J. Paik, M.J. Kim, Y.K. Kim, K.S. Kim, M.G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes . Nature. 598 2021 444–450. https://doi.org/10.1038/s41586-021-03964-8.
2022
Azam, 2020, Examining the interfacial defect passivation with chlorinated organic salt for highly efficient and stable perovskite solar cells, Sol. RRL., 4, 10.1002/solr.202000358
Nie, 2015, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347, 522, 10.1126/science.aaa0472
You, 2014, Song Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility, ACS Nano, 8, 1674, 10.1021/nn406020d
Jamil, 2022, Numerical modeling of AZTS as buffer layer in CZTS solar cells with back surface field for the improvement of cell performance, Sol. Energy, 231, 41, 10.1016/j.solener.2021.11.025
Nowsherwan, 2022, Role of graphene-oxide and reduced-graphene-oxide on the performance of lead-free double perovskite solar cell, Z. Naturforsch., 10.1515/zna-2022-0147
Faraz, 2021, Comparative study of impedance spectroscopy and photovoltaic properties of metallic and natural dye based dye sensitized solar cells, Phys. B Condens. Matter, 602, 10.1016/j.physb.2020.412567
Nowsherwan, 2022, Performance analysis and optimization of a PBDB-T: ITIC based organic solar cell using graphene oxide as the hole transport layer, Nanomaterials, 12, 1767, 10.3390/nano12101767
Ali, 2021, Simulation study of perovskite based solar cells using CZTS as HTM with different electron transporting materials, Journal of Ovonic Research, 17, 10.15251/JOR.2021.175.437
Iftiquar, 2016, Numerical simulation and light trapping in perovskite solar cell, J. Photon. Energy, 6, 10.1117/1.JPE.6.025507
Mohammadi, 2020, Nio@ gese core-shell nano-rod array as a new hole transfer layer in perovskite solar cells:A numerical study, Sol. Energy, 204, 200, 10.1016/j.solener.2020.04.038
Sardashti, 2017, High efficiency MAPbI3 perovskite solar cell using a pure thin film of polyoxometalate as scaffold layer, ChemSusChem, 10, 3773, 10.1002/cssc.201701027
Wang, 2019, A rutile TiO2 electron transport layer for the enhancement of charge collection for efficient perovskite solar cells, Angew. Chem. Int. Ed., 58, 9414, 10.1002/anie.201902984
Yang, 2016, Recent progress in electron transport layers for efficient perovskite solar cells, J. Mater. Chem., 4, 3970, 10.1039/C5TA09011C
Jeon, 2014, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014
Song, 2015, Low-temperature SnO 2-based electron selective contact for efficient and stable perovskite solar cells, J. Mater. Chem., 3, 10837, 10.1039/C5TA01207D
Kumar, 2013, Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells, Chem. Commun., 49, 11089, 10.1039/c3cc46534a
Son, 2014, 11% efficient perovskite solar cell based on ZnO nanorods:an effective charge collection system, J. Phys. Chem. C, 118, 16567, 10.1021/jp412407j
Mali, 2016, In situ processed gold nanoparticle-embedded TiO 2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency, Nanoscale, 8, 2664, 10.1039/C5NR07395B
Shin, 2017, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells, Science, 356, 167, 10.1126/science.aam6620
Zhu, 2016, Layer‐by‐layer assembled 2D montmorillonite dielectrics for solution‐processed electronics, Adv. Mater., 28, 63, 10.1002/adma.201504501
Cai, 2015, An acid-free medium growth of rutile TiO 2 nanorods arrays and their application in perovskite solar cells, J. Mater. Chem. C, 3, 729, 10.1039/C4TC02249A
Yang, 2015, An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells, Nano Energy, 15, 670, 10.1016/j.nanoen.2015.05.027
Bunshah, 1982, 1
Palma, 2013, 383
Vukušić, 2019
Chen, 2018
Pachauri, 2017, Few layered graphene oxide thin films:A potential matrix for immunosensors, Integrated Ferroelectrics Int. J., 184, 85, 10.1080/10584587.2017.1368790
Purkayastha, 2018, Dopant controlled photoinduced hydrophilicity and photocatalytic activity of SnO2 thin films, Appl. Surf. Sci., 447, 724, 10.1016/j.apsusc.2018.04.028
Ennaoui, 2006, TiO2 and TiO2–SiO2 thin films and powders by one-step soft-solution method: synthesis and characterizations, Sol. Energy Mater. Sol. Cell., 90, 1533, 10.1016/j.solmat.2005.10.019
Agarwal, 2014, Low temperature annealing of cadmium sulphide thin films for improving surface-interface properties, Materials Focus, 3, 267, 10.1166/mat.2014.1177
Ali, 2018, UV assisted photoelectrocatalytic degradation of reactive red 152 dye using spray deposited TiO2 thin films, J. Mater. Sci. Mater. Electron., 29, 1209, 10.1007/s10854-017-8023-y
de, 2021, Photoprotective activity of zirconia nanoparticles, Colloids Surf., B, 202
Bota, 2020, Anatomical investigations on Oenothera biennis L. using optical microscopy and scanning electron microscopy (SEM), Research Journal of Agricultural Science, 52
Hassan, 2019, Surface morphology and optical limiting properties of azure B doped PMMA film, Opt. Mater., 92, 22, 10.1016/j.optmat.2019.03.058
Ritchie, 2011, Semantics for high speed automated particle analysis by SEM/EDX, Microsc. Microanal., 17, 896, 10.1017/S1431927611005356
Mozammel, 2018, Effect of surface roughness of 316 L stainless steel substrate on the morphological and super-hydrophobic property of TiO2 thin films coatings, Silicon, 10, 2603, 10.1007/s12633-018-9796-1
Chung, 2008, Electrical and optical properties of TiO2-doped ZnO films prepared by radio-frequency magnetron sputtering, J. Phys. Chem. Solid., 69, 535, 10.1016/j.jpcs.2007.07.040
Philips'Gloeilampenfabrieken, 1958, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Res. Rep., 13, 1
Bensouyad, 2011, Correlation between structural and optical properties of TiO2:ZnO thin films prepared by sol–gel method, J. Sol. Gel Sci. Technol., 59, 546, 10.1007/s10971-011-2525-5
Nam, 2012, Growth behavior of titanium dioxide thin films at different precursor temperatures, Nanoscale Res. Lett., 7, 1, 10.1186/1556-276X-7-89
Mayerhöfer, 2021
Patterson, 1939, The Scherrer formula for X-ray particle size determination, Phys. Rev., 56, 978, 10.1103/PhysRev.56.978
Kitazawa, 2006, Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition, Thin Solid Films, 515, 1901, 10.1016/j.tsf.2006.07.032
Tumuluri, 2014, Band gap determination using Tauc's plot for LiNbO3 thin films, Int. J. ChemTech Res., 6, 3353
Hussin, 2011, Enhancement of crystallinity and optical properties of bilayer TiO2/ZnO thin films prepared by atomic layer deposition, J. Nanosci. Nanotechnol., 11, 8143, 10.1166/jnn.2011.5086
Mohamed, 2012, Photocatalytic and optical properties of nanocomposite TiO2-ZnO thin films, Eur. Phys. J. Appl. Phys., 57, 10.1051/epjap/2012110312
Munir, 2016, Effect of carrier concentration on the optical band gap of TiO2 nanoparticles, Mater. Des., 92, 64, 10.1016/j.matdes.2015.12.022
Saw, 2015, New insights on the burstein-moss shift and band gap narrowing in indium-doped zinc oxide thin films, PLoS One, 10, 10.1371/journal.pone.0141180
Abdullah, 2018, Photoluminescence study of trap-state defect on TiO2 thin films at different substrate temperature via RF magnetron sputtering, J. Phys. Conf., 995, 10.1088/1742-6596/995/1/012067
Ohta, 2001, Pressure dependence of optical properties of anatase TiO2 single crystal, Phys. Status Solidi, 223, 265, 10.1002/1521-3951(200101)223:1<265::AID-PSSB265>3.0.CO;2-R
Abazović, 2006, Photoluminescence of anatase and rutile TiO2 particles, J. Phys. Chem. B, 110, 25366, 10.1021/jp064454f
Daude, 1977, Electronic band structure of titanium dioxide, Phys. Rev. B, 15, 3229, 10.1103/PhysRevB.15.3229
Pham, 2015, Oxygen vacancy and hole conduction in amorphous TiO 2, Phys. Chem. Chem. Phys., 17, 541, 10.1039/C4CP04209C
Rajabi, 2015, Defect study of TiO2 nanorods grown by a hydrothermal method through photoluminescence spectroscopy, J. Lumin., 157, 235, 10.1016/j.jlumin.2014.08.035
Rahman, 1999, Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films, J. Phys. Chem. Solid., 60, 201, 10.1016/S0022-3697(98)00264-9
Tang, 1994, Electrical and optical properties of TiO2 anatase thin films, J. Appl. Phys., 75, 2042, 10.1063/1.356306
Bach, 1998, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 395, 583, 10.1038/26936
Feng, 2017, Hydrogenated TiO2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting, Int. J. Hydrogen Energy, 42, 3938, 10.1016/j.ijhydene.2016.10.087
Mo, 1995, Electronic and optical properties of three phases of titanium dioxide:Rutile, anatase, and brookite, Phys. Rev. B, 51, 10.1103/PhysRevB.51.13023
Xie, 2019, TiO2-B as an electron transporting material for highly efficient perovskite solar cells, J. Power Sources, 415, 8, 10.1016/j.jpowsour.2019.01.041