Fabrication and characterization of TiO2: ZnO thin films as electron transport material in perovskite solar cell (PSC)

Physica B: Condensed Matter - Tập 654 - Trang 414690 - 2023
Abdul Shakoor1, Ghazi Aman Nowsherwan2, Waheed Alam3, Shahbaz Younas Bhatti4, Ahmad Bilal4, Muhammad Nadeem5, Aurang Zaib2, Syed Sajjad Hussain6
1Department of Physics, University of the Punjab, Lahore 54590, Pakistan
2Centre of Excellence in Solid State Physics, University of the Punjab, Lahore-54590, Pakistan
3Department of Physics, Ripah International University, Islamabad, 45320, Pakistan
4School of Chemistry, Minhaj University, Lahore, 54770, Pakistan
5School of Chemistry, University of the Punjab, Lahore-54590, Pakistan
6Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan

Tài liệu tham khảo

Diebold, 2003, The surface science of titanium dioxide, Surf. Sci. Rep., 48, 53, 10.1016/S0167-5729(02)00100-0 Chong, 2005, The structural and electrical properties of thermally grown TiO2 thin films, J. Phys. Condens. Matter, 18, 645, 10.1088/0953-8984/18/2/020 Wilk, 2001, High-κ gate dielectrics:Current status and materials properties considerations, Journal of applied physics, 89, 5243, 10.1063/1.1361065 Ismail, 2013, The structural and optical properties of ZnO thin films prepared at different RF sputtering power, J. King Saud Univ. Sci., 25, 209, 10.1016/j.jksus.2012.12.004 Suda, 2004, Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method, Thin solid films, 453, 162, 10.1016/j.tsf.2003.11.185 Kania, Aneta, W. Pilarczyk, and M.M. Szindler. Structure and corrosion behavior of TiO2 thin films deposited onto Mg-based alloy using magnetron sputtering and sol-gel, Thin Solid Films. 701 (2020) 137945. https://doi.org/10.3390/coatings11010070. Barreca, 2007, TiO2 thin films by chemical vapor deposition:An XPS characterization, Surf. Sci. Spectra, 14, 27, 10.1116/11.20070902 Purica, 2002, Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD), Thin Solid Films, 403, 485, 10.1016/S0040-6090(01)01544-9 Kania, 2020, Structure and corrosion behavior of TiO2 thin films deposited onto Mg-based alloy using magnetron sputtering and sol-gel, Thin Solid Films, 701, 10.1016/j.tsf.2020.137945 Hussin, 2014, Fabrication of multilayer ZnO/TiO2/ZnO thin films with enhancement of optical properties by atomic layer deposition (ALD), Appl. Mech. Mater., 465, 916 Green, 2014, The emergence of perovskite solar cells, Nat. Photonics, 8, 506, 10.1038/nphoton.2014.134 Snaith, 2013, Henry, Perovskites:the emergence of a new era for low-cost, high-efficiency solar cells, J. Phys. Chem. Lett., 4, 3623, 10.1021/jz4020162 Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r Noh, 2013, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett., 13, 1764, 10.1021/nl400349b Kim, 2021, Development of perovskite solar cells with> 25% conversion efficiency, Joule, 5, 1033, 10.1016/j.joule.2021.04.008 Min, H. Lee, D.Y. Kim, J. Kim, G. Lee, K.S. Kim, J. Paik, M.J. Kim, Y.K. Kim, K.S. Kim, M.G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes . Nature. 598 2021 444–450. https://doi.org/10.1038/s41586-021-03964-8. 2022 Azam, 2020, Examining the interfacial defect passivation with chlorinated organic salt for highly efficient and stable perovskite solar cells, Sol. RRL., 4, 10.1002/solr.202000358 Nie, 2015, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347, 522, 10.1126/science.aaa0472 You, 2014, Song Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility, ACS Nano, 8, 1674, 10.1021/nn406020d Jamil, 2022, Numerical modeling of AZTS as buffer layer in CZTS solar cells with back surface field for the improvement of cell performance, Sol. Energy, 231, 41, 10.1016/j.solener.2021.11.025 Nowsherwan, 2022, Role of graphene-oxide and reduced-graphene-oxide on the performance of lead-free double perovskite solar cell, Z. Naturforsch., 10.1515/zna-2022-0147 Faraz, 2021, Comparative study of impedance spectroscopy and photovoltaic properties of metallic and natural dye based dye sensitized solar cells, Phys. B Condens. Matter, 602, 10.1016/j.physb.2020.412567 Nowsherwan, 2022, Performance analysis and optimization of a PBDB-T: ITIC based organic solar cell using graphene oxide as the hole transport layer, Nanomaterials, 12, 1767, 10.3390/nano12101767 Ali, 2021, Simulation study of perovskite based solar cells using CZTS as HTM with different electron transporting materials, Journal of Ovonic Research, 17, 10.15251/JOR.2021.175.437 Iftiquar, 2016, Numerical simulation and light trapping in perovskite solar cell, J. Photon. Energy, 6, 10.1117/1.JPE.6.025507 Mohammadi, 2020, Nio@ gese core-shell nano-rod array as a new hole transfer layer in perovskite solar cells:A numerical study, Sol. Energy, 204, 200, 10.1016/j.solener.2020.04.038 Sardashti, 2017, High efficiency MAPbI3 perovskite solar cell using a pure thin film of polyoxometalate as scaffold layer, ChemSusChem, 10, 3773, 10.1002/cssc.201701027 Wang, 2019, A rutile TiO2 electron transport layer for the enhancement of charge collection for efficient perovskite solar cells, Angew. Chem. Int. Ed., 58, 9414, 10.1002/anie.201902984 Yang, 2016, Recent progress in electron transport layers for efficient perovskite solar cells, J. Mater. Chem., 4, 3970, 10.1039/C5TA09011C Jeon, 2014, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014 Song, 2015, Low-temperature SnO 2-based electron selective contact for efficient and stable perovskite solar cells, J. Mater. Chem., 3, 10837, 10.1039/C5TA01207D Kumar, 2013, Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells, Chem. Commun., 49, 11089, 10.1039/c3cc46534a Son, 2014, 11% efficient perovskite solar cell based on ZnO nanorods:an effective charge collection system, J. Phys. Chem. C, 118, 16567, 10.1021/jp412407j Mali, 2016, In situ processed gold nanoparticle-embedded TiO 2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency, Nanoscale, 8, 2664, 10.1039/C5NR07395B Shin, 2017, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells, Science, 356, 167, 10.1126/science.aam6620 Zhu, 2016, Layer‐by‐layer assembled 2D montmorillonite dielectrics for solution‐processed electronics, Adv. Mater., 28, 63, 10.1002/adma.201504501 Cai, 2015, An acid-free medium growth of rutile TiO 2 nanorods arrays and their application in perovskite solar cells, J. Mater. Chem. C, 3, 729, 10.1039/C4TC02249A Yang, 2015, An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells, Nano Energy, 15, 670, 10.1016/j.nanoen.2015.05.027 Bunshah, 1982, 1 Palma, 2013, 383 Vukušić, 2019 Chen, 2018 Pachauri, 2017, Few layered graphene oxide thin films:A potential matrix for immunosensors, Integrated Ferroelectrics Int. J., 184, 85, 10.1080/10584587.2017.1368790 Purkayastha, 2018, Dopant controlled photoinduced hydrophilicity and photocatalytic activity of SnO2 thin films, Appl. Surf. Sci., 447, 724, 10.1016/j.apsusc.2018.04.028 Ennaoui, 2006, TiO2 and TiO2–SiO2 thin films and powders by one-step soft-solution method: synthesis and characterizations, Sol. Energy Mater. Sol. Cell., 90, 1533, 10.1016/j.solmat.2005.10.019 Agarwal, 2014, Low temperature annealing of cadmium sulphide thin films for improving surface-interface properties, Materials Focus, 3, 267, 10.1166/mat.2014.1177 Ali, 2018, UV assisted photoelectrocatalytic degradation of reactive red 152 dye using spray deposited TiO2 thin films, J. Mater. Sci. Mater. Electron., 29, 1209, 10.1007/s10854-017-8023-y de, 2021, Photoprotective activity of zirconia nanoparticles, Colloids Surf., B, 202 Bota, 2020, Anatomical investigations on Oenothera biennis L. using optical microscopy and scanning electron microscopy (SEM), Research Journal of Agricultural Science, 52 Hassan, 2019, Surface morphology and optical limiting properties of azure B doped PMMA film, Opt. Mater., 92, 22, 10.1016/j.optmat.2019.03.058 Ritchie, 2011, Semantics for high speed automated particle analysis by SEM/EDX, Microsc. Microanal., 17, 896, 10.1017/S1431927611005356 Mozammel, 2018, Effect of surface roughness of 316 L stainless steel substrate on the morphological and super-hydrophobic property of TiO2 thin films coatings, Silicon, 10, 2603, 10.1007/s12633-018-9796-1 Chung, 2008, Electrical and optical properties of TiO2-doped ZnO films prepared by radio-frequency magnetron sputtering, J. Phys. Chem. Solid., 69, 535, 10.1016/j.jpcs.2007.07.040 Philips'Gloeilampenfabrieken, 1958, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Res. Rep., 13, 1 Bensouyad, 2011, Correlation between structural and optical properties of TiO2:ZnO thin films prepared by sol–gel method, J. Sol. Gel Sci. Technol., 59, 546, 10.1007/s10971-011-2525-5 Nam, 2012, Growth behavior of titanium dioxide thin films at different precursor temperatures, Nanoscale Res. Lett., 7, 1, 10.1186/1556-276X-7-89 Mayerhöfer, 2021 Patterson, 1939, The Scherrer formula for X-ray particle size determination, Phys. Rev., 56, 978, 10.1103/PhysRev.56.978 Kitazawa, 2006, Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition, Thin Solid Films, 515, 1901, 10.1016/j.tsf.2006.07.032 Tumuluri, 2014, Band gap determination using Tauc's plot for LiNbO3 thin films, Int. J. ChemTech Res., 6, 3353 Hussin, 2011, Enhancement of crystallinity and optical properties of bilayer TiO2/ZnO thin films prepared by atomic layer deposition, J. Nanosci. Nanotechnol., 11, 8143, 10.1166/jnn.2011.5086 Mohamed, 2012, Photocatalytic and optical properties of nanocomposite TiO2-ZnO thin films, Eur. Phys. J. Appl. Phys., 57, 10.1051/epjap/2012110312 Munir, 2016, Effect of carrier concentration on the optical band gap of TiO2 nanoparticles, Mater. Des., 92, 64, 10.1016/j.matdes.2015.12.022 Saw, 2015, New insights on the burstein-moss shift and band gap narrowing in indium-doped zinc oxide thin films, PLoS One, 10, 10.1371/journal.pone.0141180 Abdullah, 2018, Photoluminescence study of trap-state defect on TiO2 thin films at different substrate temperature via RF magnetron sputtering, J. Phys. Conf., 995, 10.1088/1742-6596/995/1/012067 Ohta, 2001, Pressure dependence of optical properties of anatase TiO2 single crystal, Phys. Status Solidi, 223, 265, 10.1002/1521-3951(200101)223:1<265::AID-PSSB265>3.0.CO;2-R Abazović, 2006, Photoluminescence of anatase and rutile TiO2 particles, J. Phys. Chem. B, 110, 25366, 10.1021/jp064454f Daude, 1977, Electronic band structure of titanium dioxide, Phys. Rev. B, 15, 3229, 10.1103/PhysRevB.15.3229 Pham, 2015, Oxygen vacancy and hole conduction in amorphous TiO 2, Phys. Chem. Chem. Phys., 17, 541, 10.1039/C4CP04209C Rajabi, 2015, Defect study of TiO2 nanorods grown by a hydrothermal method through photoluminescence spectroscopy, J. Lumin., 157, 235, 10.1016/j.jlumin.2014.08.035 Rahman, 1999, Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films, J. Phys. Chem. Solid., 60, 201, 10.1016/S0022-3697(98)00264-9 Tang, 1994, Electrical and optical properties of TiO2 anatase thin films, J. Appl. Phys., 75, 2042, 10.1063/1.356306 Bach, 1998, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 395, 583, 10.1038/26936 Feng, 2017, Hydrogenated TiO2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting, Int. J. Hydrogen Energy, 42, 3938, 10.1016/j.ijhydene.2016.10.087 Mo, 1995, Electronic and optical properties of three phases of titanium dioxide:Rutile, anatase, and brookite, Phys. Rev. B, 51, 10.1103/PhysRevB.51.13023 Xie, 2019, TiO2-B as an electron transporting material for highly efficient perovskite solar cells, J. Power Sources, 415, 8, 10.1016/j.jpowsour.2019.01.041