Fabrication and Characterization of Hemp Fibre Based 3D Printed Honeycomb Sandwich Structure by FDM Process
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wambua, P., Ivens, J., Verpoest, I.: Natural fibres: can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63(9), 1259–1264 (2003)
ASTM F2792–12a: 2012, Standard terminology for additive manufacturing technologies
Hague, R., Mansour, S., Saleh, N.: Design opportunities with rapid manufacturing. Assembly Automation 23(4), 346–356 (2003)
Brooks, H., Molony, S.: Design and evaluation of additively manufactured parts with three dimensional continuous fibre reinforcement. Mater. Des. 90, 276–283 (2016)
Masood, S.H.: Advances in fused deposition modeling. Comprehensive Materials Processing. 10(2014), 69–91 (2014)
Galantucci, L.M., Lavecchia, F., Percoco, G.: Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling. CIRP Ann. 59(1), 247–250 (2010)
Brischetto, S., Ferro, C.G., Torre, R., Maggiore, P.: 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores. Curved and Layered Structures 5(1), 80–94 (2018)
Brischetto, S., Torre, R.: Honeycomb Sandwich Specimens Made of PLA and Produced Via 3D FDM Printing Process: An Experimental Study. Journal of Aircraft and Spacecraft Technology 4, 54–69 (2020)
Shofner, M.L., Lozano, K., Rodríguez-Macías, F.J., Barrera, E.V.: Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89(11), 3081–3090 (2003)
Zhong, W., Li, F., Zhang, Z., Song, L., Li, Z.: Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng., A 301(2), 125–130 (2001)
Gray, R.W., IV., Baird, D.G., Bøhn, J.H.: Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling. Polym. Compos. 19(4), 383–394 (1998)
Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H., Horiguchi, K., Hirano, Y.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific reports 6, 23058 (2016)
Le Duigou, A., Barbé, A., Guillou, E., Castro, M.: 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Mater. Des. 180, 107884 (2019)
Depuydt, D., Balthazar, M., Hendrickx, K., Six, W., Ferraris, E., Desplentere, F., Van Vuure, A.W.: Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polym. Compos. 40(5), 1951–1963 (2019)
Antony, S., Cherouat, A., Montay, G.: Hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure for aerospace applications. Advances in aircraft and spacecraft science 6(2), 87–103 (2019)
Zuhri, M.Y.M., Guan, Z.W., Cantwell, W.J.: The mechanical properties of natural fibre based honeycomb core materials. Compos. B Eng. 58, 1–9 (2014)
Stocchi, A., Colabella, L., Cisilino, A., Álvarez, V.: Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics. Mater. Des. 55, 394–403 (2014)
Petrone, G., Rao, S., De Rosa, S., Mace, B.R., Franco, F., Bhattacharyya, D.: Initial experimental investigations on natural fibre reinforced honeycomb core panels. Compos. B Eng. 55, 400–406 (2013)
Vitale, J.P., Francucci, G., Xiong, J., Stocchi, A.: Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels. Compos. A Appl. Sci. Manuf. 94, 217–225 (2017)
Roslan, S.A.H., Hassan, M.Z., Rasid, Z.A., Zaki, S.A., Daud, Y., Aziz, S., Sarip, S. and Ismail, Z., 2015. Mechanical properties of bamboo reinforced epoxy sandwich structure composites. International Journal of Automotive & Mechanical Engineering, 12, pp. 2882-2892.
Du, Y., Yan, N., Kortschot, M.T.: An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels. Compos. Struct. 106, 160–166 (2013)
Hemprinted. Available at: https://hemprinted.com/ [Accessed April 26, 2019]
Antony, S., Cherouat, A., Montay, G.: Experimental, analytical and numerical analysis to investigate the tensile behaviour of hemp fibre yarns. Compos. Struct. 202, 482–490 (2018)
ASTM D638–14, 2013. ASTM D638–14, standard test method for tensile properties of plastics
Cantrell, J. T., Rohde, S., Damiani, D., Gurnani, R., DiSandro, L., Anton, J, & Ifju, P. G. Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyping Journal, 23 (4) 811-824 (2017)
Lederle, F., Meyer, F., Brunotte, G.P., Kaldun, C., Hübner, E.G.: Improved mechanical properties of 3D-printed parts by fused deposition modeling processed under the exclusion of oxygen. Progress in Additive Manufacturing 1(1–2), 3–7 (2016)
Salem, T.F., Tirkes, S., Akar, A.O., Tayfun, U.: Enhancement of mechanical, thermal and water uptake performance of TPU/jute fiber green composites via chemical treatments on fiber surface. e-Polymers 20(1), 133–143 (2020)
Xu, S., Beynon, J.H., Ruan, D., Lu, G.: Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos. Struct. 94(8), 2326–2336 (2012)
Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A Mathematical and Physical Sciences 382(1782), 25–42 (1982)
Ingrole, A., Hao, A., Liang, R.: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater. Des. 117, 72–83 (2017)
Fan, X., Verpoest, I., Vandepitte, D.: Finite element analysis of out-of-plane compressive properties of thermoplastic honeycomb. J. Sandwich Struct. Mater. 8(5), 437–458 (2006)