Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator

H. M. Srivástava1, Sevtap Sümer Eker2, Samaneh G. Hamidi3, Jay M. Jahangiri4
1Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 3R4, Canada
2Department of Mathematics, Faculty of Science, Dicle University, Diyarbakır, Turkey
3Department of Mathematics, Brigham Young University, Provo, USA
4Department of Mathematical Sciences, Kent State University, Burton, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Airault, H., Bouali, A.: Differential calculus on the Faber polynomials. Bull. Sci. Math. 130, 179–222 (2006)

Airault, H., Ren, J.: An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sci. Math. 126, 343–367 (2002)

Ali, R.M., Lee, S.K., Ravichandran, V., Supramaniam, S.: Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 25, 344–351 (2012)

Çaglar, M., Orhan, H., Yagmur, N.: Coefficient bounds for new subclasses of bi-univalent functions. Filomat 27(7), 1165–1171 (2013)

Deniz, E.: Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2(1), 49–60 (2013)

Duren, P.L.: Univalent Functions Grundlehren Math. Wiss., vol. 259. Springer, New York (1983)

Eker, S.S.: Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turk. J. Math. 40, 641–646 (2016)

Eker, S.S.: Coefficient estimates for new subclasses of m-fold symmetric bi-univalent functions. Theory Appl. Math. Comput. Sci. 6(2), 103–109 (2016)

Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24, 1569–1573 (2011)

Hamidi, S.G., Jahangiri, J.M.: Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. C. R. Acad. Sci. Paris Ser. I(352), 17–20 (2014)

Hamidi, S.G., Jahangiri, J.M.: Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iran. Math. Soc. 41, 1103–1119 (2015)

Hamidi, S.G., Jahangiri, J.M.: Faber polynomial coefficient of bi-subordinate functions. C. R. Acad. Sci. Paris Ser. I(354), 365–370 (2016)

Ibrahim, R.W., Jahangiri, J.M.: Boundary fractional differential equation in a complex domain. Bound. Value Probl. 2014(66), 11 (2014)

Jahangiri, J.M., Hamidi, S.G.: Coefficient estimates for certain classes of bi-univalent functions. Int. J. Math. Math. Sci. 2013, Article ID 190560, 4 (2013)

Jahangiri, J.M., Hamidi, S.G.: Faber polynomial coefficient estimates for analytic bi-Bazilevic functions. Mat. Vesnik 67, 123–129 (2015)

Jahangiri, J.M., Hamidi, S.G., Halim, S.A.: Coefficients of bi-univalent functions with positive real part derivatives. Bull. Malays. Math. Sci. Soc. (2) 37, 633–640 (2014)

Jahangiri, J.M., Magesh, N., Yamini, J.: Fekete-Szego inequalities for classes of bi-starlike and biconvex functions. Electron. J. Math. Anal. Appl. 3, 133–140 (2015)

Kumar, S.S., Kumar, V., Ravichandran, V.: Estimates for the initial coefficients of bi-univalent functions. Tamsui Oxf. J. Inf. Math. Sci. 29, 487–504 (2013)

Magesh, N.N., Yamini, J.: Coefficient bounds for a certain subclass of bi-univalent functions. Int. Math. Forum 27, 1337–1344 (2013)

Srivastava, H.M.: Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions. In: Pardalos, P.M., Georgiev, P.G., Srivastava, H.M. (eds.) Nonlinear Analysis: Stability; Approximation; and Inequalities, Springer Optimization and Its Application 68, pp. 607–630. Springer, Berlin (2012)

Srivastava, H.M., Bansal, D.: Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egypt. Math. Soc. 23, 242–246 (2015)

Srivastava, H.M., Joshi, S.B., Joshi, S.S., Pawar, H.: Coefficient estimates for certain subclasses of meromorphically bi-univalent functions. Palest. J. Math. 5(Special Issue), 250–258 (2016)

Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23, 1188–1192 (2010)

Srivastava, H.M., Owa, S.: Univalent Functions, Fractional Calculus, and Their Applications. Ellis Horwood Ltd. Publ., Chichester (1989)

Srivastava, H.M., Eker, S.S., Ali, R.M.: Coefficient Bounds for a certain class of analytic and bi-univalent functions. Filomat 29, 1839–1845 (2015)

Todorov, P.G.: On the Faber polynomials of the univalent functions of class $$\sum $$ ∑ . J. Math. Anal. Appl. 162, 268–276 (1991)

Tremblay, R.: Une Contribution ‘a la Théorie de la D érivée Fractionnaire, Ph.D. Thesis, Laval University, Québec (1974)

Xu, Q.H., Gui, Y.C., Srivastava, H.M.: Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 25, 990–994 (2012)

Xu, Q.H., Xiao, H.G., Srivastava, H.M.: A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 218, 11461–11465 (2012)

Zaprawa, P.: On the Fekete–Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 21(1), 169–178 (2014)