Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator
Tóm tắt
Từ khóa
Tài liệu tham khảo
Airault, H., Bouali, A.: Differential calculus on the Faber polynomials. Bull. Sci. Math. 130, 179–222 (2006)
Airault, H., Ren, J.: An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sci. Math. 126, 343–367 (2002)
Ali, R.M., Lee, S.K., Ravichandran, V., Supramaniam, S.: Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 25, 344–351 (2012)
Çaglar, M., Orhan, H., Yagmur, N.: Coefficient bounds for new subclasses of bi-univalent functions. Filomat 27(7), 1165–1171 (2013)
Deniz, E.: Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2(1), 49–60 (2013)
Duren, P.L.: Univalent Functions Grundlehren Math. Wiss., vol. 259. Springer, New York (1983)
Eker, S.S.: Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turk. J. Math. 40, 641–646 (2016)
Eker, S.S.: Coefficient estimates for new subclasses of m-fold symmetric bi-univalent functions. Theory Appl. Math. Comput. Sci. 6(2), 103–109 (2016)
Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24, 1569–1573 (2011)
Hamidi, S.G., Jahangiri, J.M.: Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. C. R. Acad. Sci. Paris Ser. I(352), 17–20 (2014)
Hamidi, S.G., Jahangiri, J.M.: Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iran. Math. Soc. 41, 1103–1119 (2015)
Hamidi, S.G., Jahangiri, J.M.: Faber polynomial coefficient of bi-subordinate functions. C. R. Acad. Sci. Paris Ser. I(354), 365–370 (2016)
Ibrahim, R.W., Jahangiri, J.M.: Boundary fractional differential equation in a complex domain. Bound. Value Probl. 2014(66), 11 (2014)
Jahangiri, J.M., Hamidi, S.G.: Coefficient estimates for certain classes of bi-univalent functions. Int. J. Math. Math. Sci. 2013, Article ID 190560, 4 (2013)
Jahangiri, J.M., Hamidi, S.G.: Faber polynomial coefficient estimates for analytic bi-Bazilevic functions. Mat. Vesnik 67, 123–129 (2015)
Jahangiri, J.M., Hamidi, S.G., Halim, S.A.: Coefficients of bi-univalent functions with positive real part derivatives. Bull. Malays. Math. Sci. Soc. (2) 37, 633–640 (2014)
Jahangiri, J.M., Magesh, N., Yamini, J.: Fekete-Szego inequalities for classes of bi-starlike and biconvex functions. Electron. J. Math. Anal. Appl. 3, 133–140 (2015)
Kumar, S.S., Kumar, V., Ravichandran, V.: Estimates for the initial coefficients of bi-univalent functions. Tamsui Oxf. J. Inf. Math. Sci. 29, 487–504 (2013)
Magesh, N.N., Yamini, J.: Coefficient bounds for a certain subclass of bi-univalent functions. Int. Math. Forum 27, 1337–1344 (2013)
Srivastava, H.M.: Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions. In: Pardalos, P.M., Georgiev, P.G., Srivastava, H.M. (eds.) Nonlinear Analysis: Stability; Approximation; and Inequalities, Springer Optimization and Its Application 68, pp. 607–630. Springer, Berlin (2012)
Srivastava, H.M., Bansal, D.: Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egypt. Math. Soc. 23, 242–246 (2015)
Srivastava, H.M., Joshi, S.B., Joshi, S.S., Pawar, H.: Coefficient estimates for certain subclasses of meromorphically bi-univalent functions. Palest. J. Math. 5(Special Issue), 250–258 (2016)
Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23, 1188–1192 (2010)
Srivastava, H.M., Owa, S.: Univalent Functions, Fractional Calculus, and Their Applications. Ellis Horwood Ltd. Publ., Chichester (1989)
Srivastava, H.M., Eker, S.S., Ali, R.M.: Coefficient Bounds for a certain class of analytic and bi-univalent functions. Filomat 29, 1839–1845 (2015)
Todorov, P.G.: On the Faber polynomials of the univalent functions of class $$\sum $$ ∑ . J. Math. Anal. Appl. 162, 268–276 (1991)
Tremblay, R.: Une Contribution ‘a la Théorie de la D érivée Fractionnaire, Ph.D. Thesis, Laval University, Québec (1974)
Xu, Q.H., Gui, Y.C., Srivastava, H.M.: Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 25, 990–994 (2012)
Xu, Q.H., Xiao, H.G., Srivastava, H.M.: A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 218, 11461–11465 (2012)