FVM-BEM method based on the Green's function theory for the heat transfer problem in buried co-axial exchanger
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] V.-C. Mei, S.-K. Fischer, A theoretical and experimental analysis of vertical, concentric-tube ground-coupled heat exchangers, Oak Ridge National Laboratory, Martin Marieta Energy Systems, Inc., 1984
[2] J.-Y. Desmons, Formulation et résolution numérique de problèmes aux limites appliquées aux générateurs de chaleurs tubulaires enterrées, Thèse de Doctorat d'Etat, Université de Valenciennes, 1984
[3] Desmons, J.-Y.; Younès, R. Ben Prévision à long terme de la réponse d'un stockage de chaleur sensible dans le sol, Int. J. Heat Mass Transfer, Volume 40 (1997), pp. 3119-3134
[4] Stevens, J.-W. Coupled conduction and intermittent convective heat transfer from a buried pipe, Heat Transfer Engrg., Volume 23 (2002), pp. 34-43
[5] Mokamati, S.-V.; Prasad, R.C. Transient-based technique for the evaluation of the overall heat transfer coefficient in a concentric tube heat exchanger, Int. J. Heat Exchangers, Volume 5 (2004), pp. 15-28
[6] Mnasri, T.; Younès, R. Ben; Raddaoui, M.; Elouragini, S. Simulation of convective heat-transfer coefficient in a buried exchanger, Amer. J. Appl. Sci., Volume 5 (2007), pp. 927-933
[7] T. Mnasri, R. Ben Younès, A. Mazioud, J.F. Durastanti, Étude du coefficient de transfert d'un échangeur bi-tubulaire enterré en régime instationnaire, in: Congrès français de thermique (SFT), Ile des Embiez, vol. 1, 2007, pp. 361–366
[8] P. Hollmuller, Utilisation des échangeurs air/sol pour le chauffage et le rafraîchissement des bâtiments. Mesures in situ, modélisation analytique, simulation numérique et analyse systémique, Ph.D. thesis, Université de Genève, 2002
[9] Carslaw, H.-S.; Jager, J.-C. Conduction of Heat in Solids, Oxford University Press, London, 1959
[10] Dirker, J.; Meyer, J. Convective heat transfer coefficients in concentric annuli, Heat Transfer Engrg., Volume 26 (2005), pp. 38-44
[11] Quarmby, A. Some measurements of turbulent heat transfer in the thermal entrance region of concentric annuli, Int. J. Heat Mass Transfer, Volume 10 (1967), pp. 267-276
[12] M.K.L. Boelter, G. Young, H.W. Inversen, Distribution of heat transfer rate in the entrance section of circular tube, National Advisory Committee for Aeronautics, Technical Note 1451, 1948
[13] Mac Adams, W.H. Transmission de la chaleur, McGraw-Hill, New York, 1954
[14] Lienhard, J.-H. IV; Lienhard, J.-H. V A Heat Transfer Textbook, Phlogistron Press, Cambridge, 2002
[15] Dalle Donne, M.; Meerwald, E. Heat transfer and friction coefficients for turbulent flow of air in smooth annuli at high temperatures, Int. J. Heat Mass Transfer, Volume 16 (1973), pp. 787-809
[16] Lam, C.-K.-G.; Bremhorst, K. A modified form of the k–ε model for predicting wall turbulence, J. Fluids Engrg., Volume 103 (1981), pp. 456-460
[17] Patankar, S.-V. Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, McGraw-Hill, New York, 1980
[18] E. Divo, E. Steinthorsson, F. Rodriguez, A.-J. Kassab, J.-S. Kapat, Glenn-HT/BEM conjugate heat transfer solver for large-scale turbomachinery models, NASA Glenn Research Center, NASA CR-2003-212195, 2003
[19] Kassab, A.; Divo, E.; Heidmann, J.; Steinthorsson, E.; Rodriguez, F. BEM/FVM conjugate heat transfer analysis of a three-dimensional film cooled turbine blade, Int. J. Numer. Methods Heat Fluid Flow, Volume 13 (2003), pp. 581-610
[20] Wang, J.-G.; Liu, G.-R. A point interpolation meshless method based on radial basis functions, Int. J. Numer. Methods Engrg., Volume 54 (2002), pp. 1623-1648
[21] Wright, G.-B.; Fornberg, B. Scattered node compact finite difference-type formulas generated from radial basis functions, J. Comput. Phys., Volume 212 (2006), pp. 99-123
[22] Gambit User Manual, ver. 6.2, Fluent, Inc., 2005