FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae
Tóm tắt
The goal of this study was to characterise chemical and histochemical properties of five dipterocarp timber wood species (Dipterocarpus kerrii, Hopea plagata, Parashorea malaanoman, Shorea almon, and Shorea contorta) differing in wood service life and utilisation. Wood of H. plagata, the most durable species, contained the lowest concentrations of nitrogen and ligno-protein, the highest C/N ratio and the lowest lignin concentration per dry mass but the highest lignin and extractive concentrations per wood density. FTIR spectroscopic studies of wood and isolated lignins of D. kerrii and H. plagata revealed differences compared to P. malaanoman and Shorea sp., which are species with short service life. Lignins of the Shorea/Parashorea species had a higher G/S ratio than those of H. plagata and D. kerrii. This was also evident from histochemical staining. Principle component analysis of FTIR spectra identified differences in both lignin composition and ligno-protein content as major source of variation.
Tài liệu tham khảo
Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546
Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near infrared spectroscopy and implications of ligno-proteins. J Chem Ecol 28:2483–2501
Brunner M, Eugster E, Trenka E, Strotz LB (1996) FT-NIR spectroscopy and wood identification. Holzforsch 50:130–134
Cortrim AR, Ferraz A, Gongalves AR, Silva FT, Bruns RE (1999) Identifying the origin of lignins and monitoring their structural changes by means of FTIR-PCA and SIMCA. Bioresource Technol 68:29–34
Dence CW (1992) Lignin determination. In: Stephen YL (ed) Methods in lignin chemistry. Springler, Berlin, pp 33–61
Dyckmans J, Flessa H, Brinkmann K, Mai C, Polle A (2002) Carbon and nitrogen dynamics in the structural biomass of beech (Fagus sylvatica, L.) during the growth phase. Plant Cell Environ 25:469–478
Enriquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecol 94:457–471
Eschrich W (1976) Strasburger’s kleines Botanisches Praktikum für Anfänger. Gustav Fischer Verlag, Stuttgart, p 193
Evans PA (1991) Differentiating “hard” from “soft” woods using Fourier transform infrared and Fourier transform Raman spectroscopy. Spectrochim Acta 47A:1441–1447
Faix O (1987) Quantitative FTIR-spektroskopische Untersuchungen an Ligninen und Ligninmodellsubstanzen. Habilitationsschrift, Fachbereich Biologie Universität, Hamburg
Faix O (1991) Classification of lignins from different botanical origins by FTIR spectroscopy. Holzforsch 45:21–27
Faix O, Bremer J, Schmidt O, Stevanovic J (1991) Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier transform infrared spectroscopy. J Anal Appl Pyrolysis 21:147–162
Faix O, Grünwald C, Beinhoff O (1992) Determination of phenolic hydroxyl group content of milled wood lignins (MWL’s) from different botanical origins using selective aminolysis, FTIR, 1H-NMR, and UV spectroscopy. Holzforsch 46:425–432
Faix O, Stevanovic-Janezic T, Lundquist K (1994) The lignin of the diffuse porous angiosperm tree Triplochyton scleroxylon K. Schum with low syringyl content. J Wood Chem Technol 14:263–273
Fengel D, Wegener G (2003) Wood, chemistry and ultrastructure and reactions. Kassel Verlag, Ramagen, pp 132–164
Fengel D, Greune A, Wegener G (1983) Charakterisierung von drei Tropenholzligninen. Holzforsch 37:121–124
Gierlinger N, Jacques D, Schwanninger M, Wimmer RP, Pâques LE (2004a) Heartwood extractives and lignin content of different larch species (Larix sp.) and relationship to brown-rot decay-resistance. Trees 18:230–236
Gierlinger N, Schwanninger M, Wimmer J (2004b) Characteristics and classification of Fourier-transform near infrared spectra of heartwood of different larch species (Larix sp.). J Near Inf Spec 12:113–119
Hacke U, Sperry G, Pittermann JS (2000) Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl Ecol 1:31–41
Harrington KJ, Higgins HG, Michell AJ (1964) Infrared spectra of Eucalyptus regnans F. Muell. and Pinus radiata D. Don. Holzforsch 18:108–113
Hergert HL (1971) Infrared spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins: Occurrence, formation, structure and reactions. Wiley, New York, pp 267–297
Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–26
Jahan MS, Mun SP (2007) Characteristics of dioxane lignins isolated at different ages of natalia wood (Trema orientalis). J Wood Chem Technol 27:83–98
Langenberger G (2006) Habitat distribution of dipterocarp species in the Leyte Cordillera: an indicator for species-site suitability in local reforestation programme. Ann For Sci 63:149–156
Langenberger G, Martin K, Sauerborn J (2006) Vascular plant species inventory of a Philippine lowland rain forest and its conservation value. Biodiv Conserv 15:1271–1301
Lomibao BA (1973) Guide to the identification of the woods of Philippine Dipterocarpaceae. Magazine for Forest Products Research and Industries Development (FORPRIDE digest) 2:26–34
Mäule C (1901) Das Verhalten verholzter Membranen gegen Kaliumpermanganat, eine Holzreaktion neuer Art. Beiträge zur wissenschaftlichen Botanik 4:166–185
Meshitsuka G, Nakano J (1978) Studies on the mechanism of lignin colour reaction (XII). Mäule colour reaction (8). Mokuzai Gakkaishi 24:563–568
Meshitsuka G, Nakano J (1979) Studies on the mechanism of lignin colour reaction (XIII). Mäule colour reaction (9). Mokuzai Gakkaishi 25:588–594
Naumann D, Labischinski H, Giesbrecht P (1991) The characterization of microorganisms by Fourier transform infrared spectroscopy (FTIR). In: Nelson WH (ed) Modern Techniques for rapid microbiological analysis. VCH, New York, pp 43–96
Neus Anglès M, Reguant J, Garcia-Valls R, Salvadó J (2003) Characteristics of lignin obtained from steam-exploded softwood with soda/anthraquinone pulping. Wood Sci Technol 37:309–320
Newman MF, Burgess PF, Whitemore TC (1996) Manuals of dipterocarps for foresters, Philippines.. Center for International Forestry Research, Jakarta, pp 47–53
Nuopponen MH, Wikberg HI, Birch GM, Jääskeläinen AS, Maunu SL, Vuorinen T, Stewart D (2006) Characterization of 25 tropical hardwood with Fourier transform infrared, ultraviolet resonance Raman, and 13C-NMR cross-polarization/magic-angle spinning spectroscopy. J Appl Polymer Sci 102:810–819
Onuorach EO (2000) The wood preservative potentials of heartwood extracts of Milicia excelsa and Erythrophleum suaveolens. Bioresource Technol 75:171–173
Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Intern Biodeterior Biodegr 52:151–160
Parker PS (1983) Application of Infrared, Raman and Resonance Raman spectroscopy in biochemistry. Plenum press, New York, pp 21–25
Pastore TCM, Santos KO, Rubim JC (2004) A spectrocolorimetric study on the effect of ultraviolet irradiation of four tropical hardwoods. Bioresource Technol 93:37–42
Pastusiak R (2003) Charakterisierung von Zellstoffkomponenten- Analytik, Spektroskopie, Reaktionskinetik und Modellierung. Dissertation, Fakultät für Chemie der Technischen Universität München
Polle A, Otter T, Sandermann H (1997) Biochemistry and physiology of lignin synthesis. In: Rennenberg H, Eschrich W, Ziegler H (eds) Plant physiology of trees. Backhuys Publishers, Leiden, pp 455–475
Pomar F, Merino F, Barcelo AR (2002) O-4 linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol/HCl) reaction. Protoplasma 220:17–28
Robert DR, Bardet M, Gellerstedt G, Lindfors EL (1984) Structural changes in lignin during Kraft cooking. Part 3: on the structure of dissolved lignins. J Wood Chem Technol 4:239–263
Saka S (2001) Chemical composition and distribution. In: Hon DN-S, Shiraishi N (eds) Wood and cellulose chemistry, Marcel Dekker, New York, pp 51–82
Santana MAE, Okino EYA (2007) Chemical composition of 36 Brazilian Amazon forest wood species. Holzforsch 61:469–477
Soerianegara I, Lemmens RHMJ (1994) Plant resources of South-East Asia. Timber tree: major commercial timbers. Prosea, Bogor, Indonesia
TAPPI T 204 om-88 (1987) Solvent extractives of wood and pulp
Vallet C, Chabbert B, Czaninski Y, Monties B (1996) Histochemistry of lignin deposition during sclerenchyma differentiation in Alfalfa stems. Annals Bot 78:625–632
Wagenführ R (1966) Anatomie des Holzes. VEB Fachbuchverlag, Leipzig, pp 156–159
Watanabe Y, Fukazawa Y, Kojima Y, Funada R, Ona T, Asada T (1997) Histochemical study on the heterogeneity of lignin in Eucalyptus species. I. Effects of polyphenols. Mokuzai Gakkaishi 43:102–107
Watanabe Y, Kojima Y, Ona T, Asada T, Sano Y, Fukazawa Y, Funada R (2004) Histochemical study on the heterogeneity of lignin in Eucalyptus species. II. The distribution of lignins and polyphenols in the walls of various cell types. IAWA J 25:283–295
Wegener G, Strobel C (1991) Determination of phenolic hydroxyl groups in lignins and lignin fractions by means of FTIR spectroscopy. In: Proceedings of the second Brazilian symposium on the chemistry of lignins and other wood components. September 2–4. Campinas, SP, p 12
Whetten RS, Mackay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49:585–609
Whitemore TC (1984) Tropical rain forests of the far east, Second edition edn. Clarendon Press, Oxford, pp 1–14
Wiesner J (1878) Note über das Verhalten des Phloroglucins und einiger verwandter Körper zur verholzten Zellmembran. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Math Nat Classe 77:60–66
Windeisen E, Wegener G, Lesnino G, Schumacher P (2002) Investigation of the correlation between extractives content and natural durability in 20 cultivated larch trees. Holz Roh- Werkst 60:373–374