FSP1 is a glutathione-independent ferroptosis suppressor

Nature - Tập 575 Số 7784 - Trang 693-698 - 2019
Sebastian Doll1, Florêncio P. Freitas2, Ron Shah3, Maceler Aldrovandi1, Milene Costa da Silva1, Irina Ingold1, Andrea Goya Grocin4, Thamara Nishida Xavier da Silva2, Elena Panzilius5, Christina Scheel5, André Mourão6, Katalin Buday1, Mami Sato1, Jonas Wanninger1, Thibaut Vignane1, Vaishnavi Mohana1, Markus Rehberg7, Andrew Flatley8, Aloys Schepers8, Andreas Kurz9, Daniel A. White10, Markus Sauer9, Michael Sattler6, Edward W. Tate4, Werner Schmitz11, Almut Schulze11, Valerie B. O’Donnell10, Bettina Proneth1, Grzegorz M. Popowicz6, Derek A. Pratt3, José Pedro Friedmann Angeli2, Marcus Conrad1
1Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
2Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
3Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
4Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London, UK
5Institute of Stem Cell Biology, Helmholtz Zentrum München, Neuherberg, Germany
6Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
7Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
8Monoclonal Antibody Core Facility, Helmholtz Zentrum München, Neuherberg, Germany
9Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
10Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
11Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

Conrad, M., Angeli, J. P., Vandenabeele, P. & Stockwell, B. R. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15, 348–366 (2016).

Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci. 3, 232–243 (2017).

Shah, R., Shchepinov, M. S. & Pratt, D. A. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent. Sci. 4, 387–396 (2018).

Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

Tarangelo, A. et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22, 569–575 (2018).

Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

Wu, M., Xu, L. G., Li, X., Zhai, Z. & Shu, H. B. AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J. Biol. Chem. 277, 25617–25623 (2002).

Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 (2018).

Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33, 890–904 (2018).

Angeli, J. P. F., Shah, R., Pratt, D. A. & Conrad, M. Ferroptosis inhibition: mechanisms and opportunities. Trends Pharmacol. Sci. 38, 489–498 (2017).

Horikoshi, N., Cong, J., Kley, N. & Shenk, T. Isolation of differentially expressed cDNAs from p53-dependent apoptotic cells: activation of the human homologue of the Drosophila peroxidasin gene. Biochem. Biophys. Res. Commun. 261, 864–869 (1999).

Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature https://doi.org/10.1038/s41586-019-1705-2 (2019).

Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008).

Eisenhaber, F. et al. Prediction of lipid posttranslational modifications and localization signals from protein sequences: big- Π, NMT and PTS1. Nucleic Acids Res. 31, 3631–3634 (2003).

Borgese, N., Aggujaro, D., Carrera, P., Pietrini, G. & Bassetti, M. A role for N-myristoylation in protein targeting: NADH-cytochrome b 5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes. J. Cell Biol. 135, 1501–1513 (1996).

Mousnier, A. et al. Fragment-derived inhibitors of human N-myristoyltransferase block capsid assembly and replication of the common cold virus. Nat. Chem. 10, 599–606 (2018).

Elguindy, M. M. & Nakamaru-Ogiso, E. Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH:ubiquinone oxidoreductases (NDH-2). J. Biol. Chem. 290, 20815–20826 (2015).

Frei, B., Kim, M. C. & Ames, B. N. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl Acad. Sci. USA 87, 4879–4883 (1990).

Haidasz, E. A., Van Kessel, A. T. & Pratt, D. A. A continuous visible light spectrophotometric approach to accurately determine the reactivity of radical-trapping antioxidants. J. Org. Chem. 81, 737–744 (2016).

Niki, E. Mechanisms and dynamics of antioxidant action of ubiquinol. Mol. Aspects Med. 18, 63–70 (1997).

Mannes, A. M., Seiler, A., Bosello, V., Maiorino, M. & Conrad, M. Cysteine mutant of mammalian GPx4 rescues cell death induced by disruption of the wild-type selenoenzyme. FASEB J. 25, 2135–2144 (2011).

Shimada, K., Hayano, M., Pagano, N. C. & Stockwell, B. R. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem. Biol. 23, 225–235 (2016).

Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

Morré, D. J. & Morré, D. M. Non-mitochondrial coenzyme Q. Biofactors 37, 355–360 (2011).

Nyquist, S. E., Barr, R. & Morré, D. J. Ubiquinone from rat liver Golgi apparatus fractions. Biochim. Biophys. Acta 208, 532–534 (1970).

Rees, M. G. et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol. 12, 109–116 (2016).

Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 5, 1210–1223 (2015).

Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).