FPGA-Based Real-Time Implementation of Detection Algorithm for Automatic Traffic Surveillance Sensor Network

Journal of Signal Processing Systems - Tập 68 - Trang 1-18 - 2011
Marek Wójcikowski1, Robert Żaglewski2, Bogdan Pankiewicz1
1Gdańsk University of Technology, Gdansk, Poland
2Intel Shannon Ltd., Shannon, Ireland

Tóm tắt

This paper describes the FPGA-based hardware implementation of an algorithm for an automatic traffic surveillance sensor network. The aim of the algorithm is to extract moving vehicles from real-time camera images for the evaluation of traffic parameters, such as the number of vehicles, their direction of movement and their approximate speed, using low power hardware of a sensor network node. A single, stationary, monochrome camera is used, mounted at a location high above the road. Occlusions are not detected, however simple shadow and highlight elimination is performed. The algorithm is designed for frame-rate efficiency and is specially suited for pipelined hardware implementation. The authors, apart from the careful selection of particular steps of the algorithm and the modifications towards parallel implementation, also proposed novel improvements such as backgrounds’ binary mask combination or non-linear functions in highlight detection, resulting in increasing the robustness and efficiency of hardware realization. The algorithm has been implemented in FPGA and tested on real-time video streams from an outdoor camera.

Tài liệu tham khảo

Tan, T. N., & Baker, K. D. (2000). Efficient image gradient based vehicle localization. IEEE Transactions on Image Processing, 9(8), 1343–1356. Rajagopalan, A. N., & Chellappa, R. (2000). Vehicle detection and tracking in video. In Proc. Int. Conf. Image Process, Vancouver, BC, Canada, vol. 1, pp. 351–354. Koller, D., Weber, J., & Malik, J. (1994). Robust multiple car tracking with occlusion reasoning. In Proc. European Conf. On Computer Vision, Stockholm, Sweden, pp. 189–196. Cheung, S. C., & Kamath, C. (2004). Robust techniques for background subtraction in urban traffic video. In Proc. SPIE Video Communications and Image Processing, pp. 881–892. KaewTraKulPong, P., & Bowden, R. (2003). A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes. Image and Vision Computing, 21(10), 913–929. Wojcikowski, M., Zaglewski, R., & Pankiewicz, B. (2008). An intelligent image processing sensor—the algorithm and the hardware implementation. In Proc. Int. Conf. Information Technology, Gdansk, Poland. Cucchiara, R., Grana, C., Piccardi, M., & Prati, A. (2000). Statistic and knowledge-based moving object detection in traffic scenes. In IEEE Proc. Intelligent Transportation Systems, Dearborn, MI, pp. 27–32. Cucchiara, R., Granna, C., Piccardi, M., & Prati, A. (2003). Detecting moving objects, ghosts and shadows in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1337–1342. Gorgon, M., Pawlik, P., Jablonski, M., & Przybylo, J. (2007). FPGA-based road traffic videodetector. In Proc. 12th Euromicro Conf. on Digital System Design, Architectures, Methods and Tools (DSD ’09), Lubeck, Gernamy. Pamula, W. (2009). Vehicle detection algorithm for FPGA based implementation. Computer Recognition Systems 3, Springer Berlin/Heidelberg, vol. 57/2009, pp. 585–592. Silberberg, T. M., Harwood, D. A., & Davis, L. S. (1986). Object recognition using oriented model points. Computer Vision, Graphics, and Image Processing, 35(1), 47–71. Horaud, R. (1987). New methods for matching 3D objects with single perspective view. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(3), 401–412. Lowe, D. G. (1987). Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence, 31(3), 355–395. Koller, D., Daniilidis, K., & Nagel, H.-H. (1993). Model-based object tracking in monocular image sequences of road traffic scenes. International Journal of Computer Vision, 10, 257–281. Grimson, W. E. L. (1990). The combinatorics of object recognition in cluttered environments using constrained search. Artificial Intelligence, 44(1–2), 121–165. Horn, B. K. P., & Schunk, B. G. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203. Barron, J. L., Fleet, D. J., & Beauchemin, S. (1994). Performance of optical flow techniques. International Journal of Computer Vision, 12(1), 43–77. Bainbridge-Smith, A., & Lane, R. G. (1997). Determining optical flow using a differential method. Image and Vision Computing, 15(1), 11–22. McIvor, A. M. (2000). Background subtraction techniques. In Proc. of Image and Vision Computing, Auckland, New Zealand. Piccardi, M. (2004). Background subtraction techniques: A review. In Proc. IEEE Conf. Syst., Man Cybern., Hague, The Netherlands, pp. 3099–3104. Bayona, A., SanMiguel, J. C., & Martínez, J. M. (2009). Comparative evaluation of stationary foreground object detection algorithms based on background subtraction techniques. Advanced Video and Signal Based Surveillance, 2009, AVSS ’09, Sixth IEEE International Conference on, pp. 25–30, doi:10.1109/AVSS.2009.35. Benezeth, Y., Jodoin, P. M., Emile, B., Laurent, H., & Rosenberger, C. (2008). Review and evaluation of commonly-implemented background subtraction algorithms. In Proc. 19th Int. Conf. Pattern Recognition, ICPR, pp. 1–4. Grove, T. D., Baker, K. D., & Tan, T. N. (1998). Colour based object tracking. In Proc. 14th Int. Conf. Pattern Recognition, Brisbane, Qld., Australia, pp. 1442–1444. Rittscher, J., Kato, J., Joga, S., & Blake, A. (2000). A probabilistic background model for tracking. In Proc. European Conf. Comput. Vision, pp. 336–350. Yang, Y. H., & Levine, M. D. (1992). The background primal sketch: an approach for tracking moving objects. Machine Vision and Applications, 5(1), 17–34. Cucchiara, R., Granna, C., Piccardi, M., Prati, A., & Sirotti, S. (2001). Improving shadow suppression in moving object detection with HSV color information. In Proc. IEEE Intell. Transp. Syst. Conf., Oakland, CA, pp. 334–339. McFarlane, N., & Schofield, C. (1995). Segmentation and tracking of piglets in images. Machine Vision and Applications, 8(3), 187–193. Wren, C., Azarbayejani, A., Darrell, T., & Pentland, A. (1997). Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 780–785. Franois, A., & Medioni, G. (1999). Adaptive color background modeling for real-time segmentation of video streams. In Proc. of Int. Conf. Imaging Science, Systems and Technology, Las Vegas, NV, pp. 227–232. McKenna, S. J., Jabri, S., Duric, Z., & Rosenfeld, A. (2000). Tracking groups of people. Computer Vision and Image Understanding, 80(1), 42–56. Haritaoglu, I., Harwood, D., & Davis, L. S. (2000). W4: real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 809–830. Zhang, R., Zhang, S., & Yu, S. (2007). Moving objects detection method based on brightness distortion and chromaticity distortion. IEEE Transactions on Consumer Electronics, 53(3), 1177–1185. Grimson, W. E. L., Stauffer, C., Romano, R., & Lee, L. (1998). Using adaptive tracking to classify and monitor activities in a site. In Proc. IEEE Conf. Comp. Vision and Pattern Recognition, Santa Barbara, CA, pp. 22–29. Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models for real-time tracking. In Conf. Computer Vision and Pattern Recognition CVPR’99, vol. II, pp. 246–252. Stauffer, C., & Grimson, W. E. L. (2000). Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 747–757. KaewTraKulPong, P., & Bowden, R. (2001). An improved adaptive background mixture model for real-time tracking with shadow detection. In Proc. 2nd European Workshop on Advanced Video-based Surveillance Systems, Kingston upon Thames. Ren, Y., Chua, C., & Ho, Y. (2003). Motion detection with non-stationary background. Machine Vision and Applications, 13(5–6), 332–343. Javed, O., Shafique, K., & Shah, M. (2002). A hierarchical approach to robust background subtraction using color and gradient information. In IEEE Workshop Motion Video Computing., IEEE Comput. Soc., Orlando, FL, pp. 22–27. Appiah, K., Hunter, A., Dickinson, P., & Meng, H. (2010). Accelerated hardware video object segmentation: From foreground detection to connected components labeling. Computer Vision and Image Understanding. doi:10.1016/j.cviu.2010.03.021. Elgammal, A., Harwood, D., & Davis, L. S. (2000). Non-parametric model for background subtraction. In European Conf. Computer Vision, Dublin, Ireland, vol. II, pp. 751–767. Toyama, K., Krumm, J., Brumitt, B., & Meyers, B. (1999). Wallflower: Principles and practice of background maintenance. In Proc. ICCV99, Corfu, Greece, pp. 255–261. Comaniciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619. Duque, D., Santos, H., & Cortez, P. (2005). Moving object detection unaffected by cast shadows. Highlights and ghosts. In Proc. IEEE Int. Conf. Image Processing, pp. 413–416. Porikli, F., Ivanov, Y., & Haga, T. (2008). Robust abandoned object detection using dual foregrounds. EURASIP Journal on Advances in Signal Processing. doi:10.1155/2008/197875. PETS’2001, Second IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, December 9, 2001. Karaman, M., Goldmann, L., Yu, D., & Sikora, T. (2005). Comparison of static background segmentation methods. In Proc. of SPIE, vol. 5960, pp 2140–2151. Cai, J., Shehata, M., & Badawy, W. (2009). A robust video-based algorithm for detecting snow movement in traffic scenes. Journal of Signal Processing Systems, 56(2–3), 307–326. New York: Springer. Scanlan, J. M., Chabries, D. M., & Christiansen, R. W. (1990). A shadow detection and removal algorithm for 2-D images. In Proc. Int. Conf. Acoustic Speech Signal Process., IEEE, Albuquerque, NM, pp. 2057–2060. Mikic, I., Cosman, P. C., Kogut, G. T., & Trivedi, M. M. (2000). Moving shadow and object detection in traffic scenes. In Proc. 15th Int. Conf. Pattern Recog., Barcelona, Spain, vol. 1, pp. 321–324. Stauder, J., Mech, R., & Ostermann, J. (1999). Detection of moving cast shadows for object segmentation. IEEE Transactions on Multimedia, 1(1), 65–76. Johnston, C. T., Gribbon, K. T., & Bailey, D. G. (2004). Implementing image processing algorithms on FPGAs. In Proceedings of the Eleventh Electronics New Zealand Conference (ENZCON’04), Palmerston North. Levine, B., Colonna, B., Oblak, T., Hughes, E., Hoffelder, M., & Schmit, H. (2003). Implementation of a target recognition application using pipelined reconfigurable hardware. In International Conference on Military and Aerospace Applications of Programmable Devices and Technologies. Horprasert, T., Harwood, D., & Davis, L. (1999). A statistical approach for real-time robust background subtraction and shadow detection. In IEEE Frame-Rate Applicat. Workshop, Kerkyra, Greece. Prati, A., Mikić, I., Trivedi, M., & Cucchiara, R. (2003). Detecting moving shadows: algorithms and evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7), 918–923. Schoepflin, T. N., & Dailey, D. J. (2003). Dynamic camera calibration of roadside traffic management cameras for vehicle speed estimation. IEEE Transactions on Intelligent Transportation Systems, 4(2), 90–98.