FET3P, ceruloplasmin, and the role of copper in iron metabolism

Advances in Protein Chemistry - Tập 60 - Trang 221-246 - 2002
Daniel J. Kosman1
1Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214, USA

Tài liệu tham khảo

Abboud, 2000, A novel mammalian iron-regulated protein involved in intracellular iron metabolism, J. Biol. Chem., 275, 19906, 10.1074/jbc.M000713200 Askwith, 1994, The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake, Cell, 76, 403, 10.1016/0092-8674(94)90346-8 Askwith, 1997, An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae, J. Biol. Chem., 272, 401, 10.1074/jbc.272.1.401 Askwith, 1996, Molecular biology of iron acquisition in Saccharomyces cerevisiae, Mol. Microbiol., 20, 27, 10.1111/j.1365-2958.1996.tb02485.x Askwith, 1998, Site-directed mutagenesis of the yeast multicopper oxidase Fet3p, J. Biol. Chem., 273, 22415, 10.1074/jbc.273.35.22415 Aznar, 2002, Pulsed EPR studies on the type 1 and type 2 Cu(II) sites in the yeast multicopper oxidase, Fet3p, Biochemistry Blackburn, 2000, Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidise, Biochemistry, 39, 2316, 10.1021/bi992334a Bonaccorsi di Patti, 2000, The essential role of Glu-185 and Tyr- 354 residues in the ferroxidase activity of Saccharomyces cerevisiae Fet3, FEBS Lett., 472, 283, 10.1016/S0014-5793(00)01435-6 Bonomi, 1996, Ferroxidase activity of recombinant Desulfovibrio vulgaris rubrerythrin, J. Biol. Inorg. Chem., 1, 67, 10.1007/s007750050024 Buonaccorsi di Patti, 1999, Homology modeling of the multicopper oxidase Fet3 gives new insights in the mechanism of iron transport in yeast, Protein Eng., 12, 895, 10.1093/protein/12.11.895 Cha, 1991, Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins, 88, 8915 Chidambaram, 1983, Ceruloplasmin and the reactions forming diferric transferrin, FEBS Lett., 159, 137, 10.1016/0014-5793(83)80432-3 Cornelius, 1990, Electron spin echo envelope modulation angle selection studies of axial pyridine coordination to copper(II) benzoylacetonate, J. Phys. Chem., 94, 6977, 10.1021/j100381a013 Dancis, 1990, Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae, Mol. Cell. Biol., 10, 2294, 10.1128/MCB.10.5.2294 Dancis, 1992, Ferric reductase of Saccharomyces cerevisiae: Molecular characterization, role in iron uptake and transcriptional control by iron, 89, 3869 Dancis, 1994, Molecular characterization of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport, Cell, 76, 393, 10.1016/0092-8674(94)90345-X Davis-Kaplan, 1998, Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: An unexpected role for intracellular chloride channels, 95, 13641 de Silva, 1997, Purification and characterization of Fet3 protein, a yeast homologue of ceruloplasmin, J. Biol. Chem., 272, 14208, 10.1074/jbc.272.22.14208 de Silva, 1995, The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase, J. Biol. Chem., 270, 1098, 10.1074/jbc.270.3.1098 Donovan, 2000, Positional cloning of zebrafish ferroportin 1 identifies a conserved vertebrate iron exporter, Nature, 403, 776, 10.1038/35001596 Ducros, 1998, Crystal structure of the type 2 Cu depleted lactase from Coprinus cinereus at 2.2 A resolution, Nat. Struct. Biol., 5, 310, 10.1038/nsb0498-310 Eide, 1993, The vacuolar H+-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism, Mol. Gen. Genet., 241, 447, 10.1007/BF00284699 Frieden, 1974, Ferroxidases and ferrireductases: Their role in iron metabolism, Adv. Exp. Med. Biol., 48, 235, 10.1007/978-1-4684-0943-7_12 Gaxiola, 1998, The yeast CLC chloride channel functions in cation homeostasis, 95, 4046 Greene, 1993, The GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein: Mutations in which have effects on respiration and iron-limited growth, Mol. Gen. Genet., 241, 542, 10.1007/BF00279896 Harris, 1999, Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux, 96, 10812 Harris, 1998, Aceruloplasminemia: An inherited neurodegenerative disease with impairment of iron homeostasis, Am. J. Clin. Nutr., 67, 972S, 10.1093/ajcn/67.5.972S Harris, 1995, Aceruloplasminemia: Molecular characterization of this disorder of iron metabolism, 92, 2539 Harrison, 1999, Molecular mechanisms of copper metabolism and the role of the Menkes disease protein, J. Biochem. Mol. Toxicol., 13, 93, 10.1002/(SICI)1099-0461(1999)13:2<93::AID-JBT5>3.0.CO;2-3 Hassett, 1995, Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae, J. Biol. Chem., 270, 128, 10.1074/jbc.270.1.128 Hassett, 1998, Spectral and kinetic properties of the Fet3 protein from Saccharomyces cerevisiae, a multinuclear copper ferroxidase enzyme, J. Biol. Chem., 273, 23274, 10.1074/jbc.273.36.23274 Hegg, 1999, Herbicide-degrading a-keto acid-dependent enzyme TfdA: Metal coordination environment and mechanistic insights, Biochemistry, 38, 16714, 10.1021/bi991796l Klomp, 1997, Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis, J. Biol. Chem., 272, 9221, 10.1074/jbc.272.14.9221 Kosman, 1993, Transition metal ion uptake in yeasts and filamentous fungi, 1 LaCroix, 1996, J. Am. Chem. Soc., 118, 7768, 10.1021/ja961217p Lahey, 1952, Studies on copper metabolism. 11. Hematologic manifestations of copper deficiency in swine, Blood, 7, 1053, 10.1182/blood.V7.11.1053.1053 Lee, 1968, Iron metabolism in copper-deficient swine, J. Clin. Invest., 47, 2058, 10.1172/JCI105891 Lerch, 1988, Evolutionary relationships among copper proteins containing coupled binuclear copper sites, 331 Lin, 1997, A role for the Saccharomyces cerevisiae ATXI gene in copper trafficking and iron transport, J. Biol. Chem., 272, 9215, 10.1074/jbc.272.14.9215 Lindley, 1997, An X-ray structural study of human ceruloplasmin in relation to ferroxidase activity, J. Biol. Inorg. Chem., 2, 454, 10.1007/s007750050156 Machonkin, 2001, Spectroscopy and reactivity of the type 1 copper site in Fet3p from Saccharomyces cerevisiae: Correlation of structure with reactivity in the multicopper oxidases, J. Am. Chem. Soc., 123, 5507, 10.1021/ja003975s Machonkin, 1998, The thermodynamics, kinetics, and molecular mechanism of intramolecular electron transfer in human certiloplasmin, J. Am. Chem. Soc., 122, 12547, 10.1021/ja002339r Machonkin, 1998, Spectroscopic and magnetic studies of human ceruloplasmin: Identification of a redoxinactive reduced type 1 copper site, Biochemistry, 37, 9570, 10.1021/bi980434v Malmström, 1994, Rack-induced bonding in blue-copper proteins, Eur. J. Biochem., 223, 711, 10.1111/j.1432-1033.1994.tb19044.x Manis, 1970, Active transport of iron by intestine: Selective defect in the mouse, Nature, 227, 385, 10.1038/227385a0 McKie, 2000, A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation, Mol. Cell, 5, 299, 10.1016/S1097-2765(00)80425-6 Messerschmidt, 1990, The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modeling and structural relationships, Eur. J. Biochem., 187, 341, 10.1111/j.1432-1033.1990.tb15311.x Messerschmidt, 1993, X-ray structures and mechanistic implications of three functional derivatives of ascorbate oxidase from zucchini, J. Mol. Biol, 230, 997, 10.1006/jmbi.1993.1215 Messerschmidt, 1992, Refined cystal structure of ascorbate oxidase at 1.9 A resolution, J. Mol. Biol., 224, 179, 10.1016/0022-2836(92)90583-6 Messerschmidt, 1992, X-ray crystallographic characterization of type 2 depleted ascorbate oxidase from zucchini, Eur. J. Biochem., 209, 597, 10.1111/j.1432-1033.1992.tb17325.x Miyajima, 1996, Increased plasma lipid peroxidation in patients with ace ruloplasminemia, Free Rad. Biol. Med., 20, 757, 10.1016/0891-5849(95)02178-7 Murphy, 1997, Protein Sci., 6, 761, 10.1002/pro.5560060402 Nakano, 1993, A possible mechanism of iron neurotoxicity, Eur. Neurol., 33, 44, 10.1159/000118537 Odermatt, 1993, Primary structure of two P-type .ATPases involved in copper homeostasis in Enterococcus hirae, J. Biol. Ghent., 268, 12775 Osaki, 1966, Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase (ceruloplasmin), J. Biol. Chem., 241, 5053, 10.1016/S0021-9258(18)99669-9 Osaki, 1966, The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum, J. Biol. Chem., 241, 2746, 10.1016/S0021-9258(18)96527-0 Patel, 1997, A novel glycosyl-phosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes, J. Biol. Chem., 272, 20185, 10.1074/jbc.272.32.20185 Patel, 2000, Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain, J. Biol. Chem., 275, 4305, 10.1074/jbc.275.6.4305 Payne, 1998, Functional expression of the Menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases, J. Biol. Chem., 273, 3765, 10.1074/jbc.273.6.3765 Petris, 1996, Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: A novel mechanism of regulated trafficking, EMBO J., 15, 101, 10.1002/j.1460-2075.1996.tb00997.x Raguzzi, 1988, Iron storage in Saccharomyces cerevisiae, FEBS Lett., 231, 253, 10.1016/0014-5793(88)80742-7 Rensing, 2000, CopA: An Escherichia coli Cu(I)-translocating P-type ATPase, 97, 652 Richardson, 1999, Role of ceruloplasmin and ascorbate in cellular iron release, J. Lab. Clin. Med., 134, 454, 10.1016/S0022-2143(99)90166-X Rydén, 1988, Evolution of blue copper proteins, 349 Shin, 1996, Chemical and spectroscopic definition of the peroxide-level intermediate in the multicopper oxidases: Relevance to the catalytic mechanism of dioxygen reduction to water, J. Am. Chem. Soc., 118, 3202, 10.1021/ja953621e Solomon, 1993, Electronic structure contributions to function in bioinorganic chemistry, Science, 259, 1575, 10.1126/science.8384374 Solomon, 1996, Electronic structure of the oxidized and reduced blue copper sites: Contributions to the electron transfer pathway, reduction potential, and geometry, Inorg. Chim. Acta, 243, 67, 10.1016/0020-1693(95)04893-6 Solomon, 1996, Multicopper oxidases and oxygenases, Chem. Rev., 96, 2563, 10.1021/cr950046o Spizzo, 1997, The yeast FET5 gene encodes a FET3-related multicopper oxidase implicated in iron transport, Mol. Gen. Genet., 256, 547, 10.1007/PL00008615 Stearman, 1996, A permease-oxidase complex involved in high-affinity iron uptake in yeast, Science, 271, 1552, 10.1126/science.271.5255.1552 Suzuki, 1994, J. Am. Chem. Soc., 116, 11145, 10.1021/ja00103a035 Tandy, 2000, Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells, J. Biol. Chem., 275, 1023, 10.1074/jbc.275.2.1023 Trinder, 2000, Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in-iron overload, Gut, 46, 270, 10.1136/gut.46.2.270 Urbanowski, 1999, The iron transporter Fth lp forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane, J. Biol. Chem., 274, 38061, 10.1074/jbc.274.53.38061 Vulpe, 1999, Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse, Nat. Genet., 21, 195, 10.1038/5979 Wessling-Resnick, 1999, Biochemistry of iron uptake, Crit. Rev. Biochem. Mol. Biol., 34, 285, 10.1080/10409239991209318 Xu, 1999, Targeted mutations in Trametes villosa laccase. Axial perturbations ofthe TI copper, J. Biol. Chem., 274, 12372, 10.1074/jbc.274.18.12372 Yuan, 1997, Restriction of copper export in Sacchar-omyces rerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway, J. Biol. Chem., 272, 25787, 10.1074/jbc.272.41.25787 Yuan, 1995, The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake, 92, 2632 Zaitseva, 1996, TheX-ray structure of human ceruloplasmin at 3.1 $̊Nature of the copper centres, J. Biol. lnorg. Chem., 1, 15, 10.1007/s007750050018 Zhou, 1997, hCTRI: A human gene for copper uptake identified by complementation in yeast, 94, 7481