FEM Simulation of High Speed Impact Behaviour of Additively Manufactured AlSi10Mg Alloy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Li W et al (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116–125. https://doi.org/10.1016/j.msea.2016.03.088
Ch SR, Raja A, Jayaganthan R, Vasa NJ, Raghunandan M (2020) Study on the fatigue behaviour of selective laser melted AlSi10Mg alloy. Mater Sci Eng A 781:139180. https://doi.org/10.1016/j.msea.2020.139180
Ch SR, Raja A, Nadig P, Jayaganthan R, Vasa NJ (2019) Influence of working environment and built orientation on the tensile properties of selective laser melted AlSi10Mg alloy. Mater Sci Eng A 750:141–151. https://doi.org/10.1016/j.msea.2019.01.103
Hitzler L et al (2019) Fracture toughness of selective laser melted AlSi10Mg. Proc Inst Mech Eng Part L J Mater Des Appl 233(4):615–621. https://doi.org/10.1177/1464420716687337
Banerjee A, Dhar S, Acharyya S, Datta D, Nayak N (2015) Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel. Mater Sci Eng A 640:200–209. https://doi.org/10.1016/j.msea.2015.05.073
Shrot A, Bäker M (2012) Determination of Johnson–Cook parameters from machining simulations. Comput Mater Sci 52(1):298–304. https://doi.org/10.1016/j.commatsci.2011.07.035
Gambirasio L, Rizzi E (2016) An enhanced Johnson–Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow. Comput Mater Sci 113:231–265. https://doi.org/10.1016/j.commatsci.2015.11.034
Raguraman M, Deb A (2006) Robust prediction of residual velocities and ballistic limits of projectiles for impact on thin aluminium plates. WIT Trans Built Environ 87:205–214. https://doi.org/10.2495/SU060211
Borvik T, Langseth M, Hopperstad OS, Malo KA (2001) Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses—Part I: Experimental study. Int J Impact Eng 27(1):19–35. https://doi.org/10.1016/S0734-743X(01)00034-3
Borvik T, Hopperstad OS, Berstad T, Langseth M (2001a) Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses—Part II: Numerical simulations. Int J Impact Eng 27(1):37–64. https://doi.org/10.1016/S0734-743X(01)00035-5
Gupta NK, Iqbal MA, Sekhon GS (2008) Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates. Int J Impact Eng 35(1):37–60. https://doi.org/10.1016/j.ijimpeng.2006.11.004
Gupta NK, Iqbal MA, Sekhon GS (2006) Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles. Int J Impact Eng 32(12):1921–1944. https://doi.org/10.1016/j.ijimpeng.2005.06.007
Kpenyigba KM, Jankowiak T, Rusinek A, Pesci R (2013) Influence of projectile shape on dynamic behavior of steel sheet subjected to impact and perforation. Thin-Walled Struct 65:93–104. https://doi.org/10.1016/j.tws.2013.01.003
Ben-Dor G, Dubinsky A, Elperin T (2006) High-speed penetration dynamics. https://doi.org/10.1007/1-4020-4239-6
Masri R, Durban D (2006) Dynamic cylindrical cavity expansion in an incompressible elastoplastic medium. Acta Mech 181(1–2):105–123. https://doi.org/10.1007/s00707-005-0245-z
Forrestal MJ, Warren TL, Børvik T (2014) A scaling law for APM2 bullets and aluminum armor. Conf Proc Soc Exp Mech Ser 1(7491):297–300. https://doi.org/10.1007/978-3-319-00771-7_35
Forrestal MJ, Warren TL (2009) Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates. Int J Impact Eng 36(2):220–225. https://doi.org/10.1016/j.ijimpeng.2008.04.005
Hill R (1998) The mathematical theory of plasticity, oxford classic texts in the physical sciences, Oxford University Press pp. 237–254
Borvik T, Holen K, Langseth M, Malo KA (1998) Experimental set-up used in ballistic penetration. Int Conf Struct Under Shock Impact SUSI 32:683–692
Borvik T, Hopperstad OS, Berstad T, Langseth M (2001b) A computational model of viscoplasticity and ductile damage for impact and penetration. Eur J Mech A/Solids 20(5):685–712. https://doi.org/10.1016/S0997-7538(01)01157-3
Burley M, Campbell JE, Dean J, Clyne TW (2018) Johnson–Cook parameter evaluation from ballistic impact data via iterative FEM modelling. Int J Impact Eng 112:180–192. https://doi.org/10.1016/j.ijimpeng.2017.10.012
Dey S, Børvik T, Hopperstad OS, Langseth M (2006) On the influence of fracture criterion in projectile impact of steel plates. Comput Mater Sci 38(1):176–191. https://doi.org/10.1016/j.commatsci.2006.02.003
Kristoffersen M, Costas M, Koenis T, Brøtan V, Paulsen CO, Børvik T (2020) On the ballistic perforation resistance of additive manufactured AlSi10Mg aluminium plates. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2019.103476
Murugesan M, Jung DW (2019) Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications. Materials (Basel) 12(4):609. https://doi.org/10.3390/ma12040609
Xing X, Duan X, Sun X, Gong H, Wang L, Jiang F (2019) Modification of residual stresses in laser additive manufactured AlSi10Mg specimens using an ultrasonic peening technique. Materials (Basel) 12(3):455. https://doi.org/10.3390/ma12030455
Niezgoda T, Morka A (2014) On the numerical methods and physics of perforation in the high-velocity impact mechanics HIGH-VELOCITY IMPACT MECHANICS An objective of this paper is a mutual comparison of few selected numerical approaches with respect to reproducing the fundamental phy
Gumbleton R, Cuenca JA, Klemencic GM, Jones N, Porch A (2019) Evaluating the coefficient of thermal expansion of additive manufactured AlSi10Mg using microwave techniques. Addit Manuf 30:100841. https://doi.org/10.1016/j.addma.2019.100841
Niu LB, Takaku H, Kobayashi M (2005) Tensile fracture behaviors in double-notched thin plates of a ductile steel. ISIJ Int 45(2):281–287. https://doi.org/10.2355/isijinternational.45.281
Bai Y, Teng X, Wierzbicki T (2009) On the application of stress triaxiality formula for plane strain fracture testing. J Eng Mater Technol Trans ASME 131(2):0210021–02100210. https://doi.org/10.1115/1.3078390
C.A.E. User Abaqus 6.12. https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-cdamageevolductile.htm
Ben-Dor G, Dubinsky A, Elperin T (2002) On the Lambert–Jonas approximation for ballistic impact. Mech Res Commun 29(2–3):137–139. https://doi.org/10.1016/S0093-6413(02)00246-X
Wang Y, Chen X, Xiao X, Vershinin VV, Ge R, Li DS (2020) Effect of Lode angle incorporation into a fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates struck by cylindrical projectiles with different nose shapes. Int J Impact Eng 139:103498. https://doi.org/10.1016/j.ijimpeng.2019.103498
Senthil K, Arindam B, Iqbal MA, Gupta NK (2017) Ballistic response of 2024 aluminium plates against blunt nose projectiles. Procedia Eng 173:363–368. https://doi.org/10.1016/j.proeng.2016.12.030