FEM Simulation of High Speed Impact Behaviour of Additively Manufactured AlSi10Mg Alloy

Journal of Dynamic Behavior of Materials - Tập 7 Số 3 - Trang 469-484 - 2021
Racholsan Raj Nirmal1, B.S.V. Patnaik2, R. Jayaganthan3
1Department of Engineering Design, IIT Madras, Chennai, India
2Department of Applied Mechanics, IIT Madras, Chennai, India
3Dept. of Eng. Design, IIT Madras, Chennai, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Li W et al (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116–125. https://doi.org/10.1016/j.msea.2016.03.088

Ch SR, Raja A, Jayaganthan R, Vasa NJ, Raghunandan M (2020) Study on the fatigue behaviour of selective laser melted AlSi10Mg alloy. Mater Sci Eng A 781:139180. https://doi.org/10.1016/j.msea.2020.139180

Ch SR, Raja A, Nadig P, Jayaganthan R, Vasa NJ (2019) Influence of working environment and built orientation on the tensile properties of selective laser melted AlSi10Mg alloy. Mater Sci Eng A 750:141–151. https://doi.org/10.1016/j.msea.2019.01.103

Hitzler L et al (2019) Fracture toughness of selective laser melted AlSi10Mg. Proc Inst Mech Eng Part L J Mater Des Appl 233(4):615–621. https://doi.org/10.1177/1464420716687337

Banerjee A, Dhar S, Acharyya S, Datta D, Nayak N (2015) Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel. Mater Sci Eng A 640:200–209. https://doi.org/10.1016/j.msea.2015.05.073

Shrot A, Bäker M (2012) Determination of Johnson–Cook parameters from machining simulations. Comput Mater Sci 52(1):298–304. https://doi.org/10.1016/j.commatsci.2011.07.035

Gambirasio L, Rizzi E (2016) An enhanced Johnson–Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow. Comput Mater Sci 113:231–265. https://doi.org/10.1016/j.commatsci.2015.11.034

Raguraman M, Deb A (2006) Robust prediction of residual velocities and ballistic limits of projectiles for impact on thin aluminium plates. WIT Trans Built Environ 87:205–214. https://doi.org/10.2495/SU060211

Borvik T, Langseth M, Hopperstad OS, Malo KA (2001) Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses—Part I: Experimental study. Int J Impact Eng 27(1):19–35. https://doi.org/10.1016/S0734-743X(01)00034-3

Borvik T, Hopperstad OS, Berstad T, Langseth M (2001a) Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses—Part II: Numerical simulations. Int J Impact Eng 27(1):37–64. https://doi.org/10.1016/S0734-743X(01)00035-5

Gupta NK, Iqbal MA, Sekhon GS (2008) Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates. Int J Impact Eng 35(1):37–60. https://doi.org/10.1016/j.ijimpeng.2006.11.004

Gupta NK, Iqbal MA, Sekhon GS (2006) Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles. Int J Impact Eng 32(12):1921–1944. https://doi.org/10.1016/j.ijimpeng.2005.06.007

Kpenyigba KM, Jankowiak T, Rusinek A, Pesci R (2013) Influence of projectile shape on dynamic behavior of steel sheet subjected to impact and perforation. Thin-Walled Struct 65:93–104. https://doi.org/10.1016/j.tws.2013.01.003

Ben-Dor G, Dubinsky A, Elperin T (2006) High-speed penetration dynamics. https://doi.org/10.1007/1-4020-4239-6

Masri R, Durban D (2006) Dynamic cylindrical cavity expansion in an incompressible elastoplastic medium. Acta Mech 181(1–2):105–123. https://doi.org/10.1007/s00707-005-0245-z

Forrestal MJ, Warren TL, Børvik T (2014) A scaling law for APM2 bullets and aluminum armor. Conf Proc Soc Exp Mech Ser 1(7491):297–300. https://doi.org/10.1007/978-3-319-00771-7_35

Forrestal MJ, Warren TL (2009) Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates. Int J Impact Eng 36(2):220–225. https://doi.org/10.1016/j.ijimpeng.2008.04.005

Hill R (1998) The mathematical theory of plasticity, oxford classic texts in the physical sciences, Oxford University Press pp. 237–254

Borvik T, Holen K, Langseth M, Malo KA (1998) Experimental set-up used in ballistic penetration. Int Conf Struct Under Shock Impact SUSI 32:683–692

Borvik T, Hopperstad OS, Berstad T, Langseth M (2001b) A computational model of viscoplasticity and ductile damage for impact and penetration. Eur J Mech A/Solids 20(5):685–712. https://doi.org/10.1016/S0997-7538(01)01157-3

Burley M, Campbell JE, Dean J, Clyne TW (2018) Johnson–Cook parameter evaluation from ballistic impact data via iterative FEM modelling. Int J Impact Eng 112:180–192. https://doi.org/10.1016/j.ijimpeng.2017.10.012

Dey S, Børvik T, Hopperstad OS, Langseth M (2006) On the influence of fracture criterion in projectile impact of steel plates. Comput Mater Sci 38(1):176–191. https://doi.org/10.1016/j.commatsci.2006.02.003

Kristoffersen M, Costas M, Koenis T, Brøtan V, Paulsen CO, Børvik T (2020) On the ballistic perforation resistance of additive manufactured AlSi10Mg aluminium plates. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2019.103476

Murugesan M, Jung DW (2019) Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications. Materials (Basel) 12(4):609. https://doi.org/10.3390/ma12040609

Xing X, Duan X, Sun X, Gong H, Wang L, Jiang F (2019) Modification of residual stresses in laser additive manufactured AlSi10Mg specimens using an ultrasonic peening technique. Materials (Basel) 12(3):455. https://doi.org/10.3390/ma12030455

Niezgoda T, Morka A (2014) On the numerical methods and physics of perforation in the high-velocity impact mechanics HIGH-VELOCITY IMPACT MECHANICS An objective of this paper is a mutual comparison of few selected numerical approaches with respect to reproducing the fundamental phy

Gumbleton R, Cuenca JA, Klemencic GM, Jones N, Porch A (2019) Evaluating the coefficient of thermal expansion of additive manufactured AlSi10Mg using microwave techniques. Addit Manuf 30:100841. https://doi.org/10.1016/j.addma.2019.100841

Niu LB, Takaku H, Kobayashi M (2005) Tensile fracture behaviors in double-notched thin plates of a ductile steel. ISIJ Int 45(2):281–287. https://doi.org/10.2355/isijinternational.45.281

Bai Y, Teng X, Wierzbicki T (2009) On the application of stress triaxiality formula for plane strain fracture testing. J Eng Mater Technol Trans ASME 131(2):0210021–02100210. https://doi.org/10.1115/1.3078390

C.A.E. User Abaqus 6.12. https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-cdamageevolductile.htm

Ben-Dor G, Dubinsky A, Elperin T (2002) On the Lambert–Jonas approximation for ballistic impact. Mech Res Commun 29(2–3):137–139. https://doi.org/10.1016/S0093-6413(02)00246-X

Wang Y, Chen X, Xiao X, Vershinin VV, Ge R, Li DS (2020) Effect of Lode angle incorporation into a fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates struck by cylindrical projectiles with different nose shapes. Int J Impact Eng 139:103498. https://doi.org/10.1016/j.ijimpeng.2019.103498

Senthil K, Arindam B, Iqbal MA, Gupta NK (2017) Ballistic response of 2024 aluminium plates against blunt nose projectiles. Procedia Eng 173:363–368. https://doi.org/10.1016/j.proeng.2016.12.030

Senthil K, Iqbal MA, Arindam B, Mittal R, Gupta NK (2018) Ballistic resistance of 2024 aluminium plates against hemispherical, sphere and blunt nose projectiles. Thin-Walled Struct 126:94–105. https://doi.org/10.1016/j.tws.2017.02.028