FAME properties, bio-oil productivity and carbon yield coefficient of Chlorella sorokiniana grown with low and high initial nitrogen concentrations

Sustainable Chemistry and Pharmacy - Tập 35 - Trang 101179 - 2023
G Papapolymerou1, N Gougoulias2, M.N. Metsoviti1, N Katsoulas3, I.T. Karapanagiotidis4, D Kasiteropoulou1, A Mpesios1, A Papadopoulou1
1Dept. of Environmental Studies, Univ. of Thessaly, 41110, Gaiopolis, Larissa, Greece
2Dept. of Agrotechnology, Gaiopolis, 41110, Larissa, Greece
3Dept. of Agriculture, Crop Production and Rural Development, University of Thessaly, 38446, Volos, Greece
4Dept. of Ichthyology and Aquatic Environment, University of Thessaly, 38446, Volos, Greece

Tài liệu tham khảo

1995 Azam, 2005, Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India Biomass Bioen, 29, 293 Bian, 2018, Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus, World J. Microbiol. Biotechnol., 34, 39, 10.1007/s11274-018-2421-z Biancarosa, 2017, Amino acid composition, protein content, and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters, J. Appl. Phycol., 29, 1001, 10.1007/s10811-016-0984-3 Chojnacka, 2004, J. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of Microalgae, Biotechnology, 3, 21, 10.3923/biotech.2004.21.34 Ciavatta, 1991, Determination of organic carbon in aqueous extracts of soils and fertilizers, Commun. Soil Sci. Plant Anal., 22, 795, 10.1080/00103629109368455 Dahiya, 2021, Biomass and lipid productivity by two algal strains ofChlorella sorokiniana grown in hydrolysate of water hyacinth, Energies, 14, 1411, 10.3390/en14051411 Dean, 2010, Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater Microalgae, Bioresour. Technol., 101, 4499, 10.1016/j.biortech.2010.01.065 Demirbaş, 1998, Fuel properties and calculation of higher heating values of vegetable oils, Fuel, 77, 1117, 10.1016/S0016-2361(97)00289-5 EPSAG Experimentelle Phykologie und Sammlung von Algenkulturen (EPSAG), Universität Göttingen, Deutschland. Available at: http://epsag.uni-goettingen.de.. Gouveia, 2009, Microalgae as a raw material for biofuels production, J. Ind. Microbiol. Biotechnol., 36, 269, 10.1007/s10295-008-0495-6 Huang, 2010, Biodiesel production by microalgal biotechnology, Appl. Energy, 87, 38, 10.1016/j.apenergy.2009.06.016 Kalayasiri, 1996, Survey of seed oils for use as diesel fuels, J. Am. Oil Chem. Soc., 73, 471, 10.1007/BF02523921 Kokkinakis, 2019, Modeling of Rayleigh-Taylor mixing using single-fluid models, Phys. Rev., 99 Krisnangkura, 1986, A simple method for estimation of cetane index of vegetable oil methyl esters, J. Am. Oil Chem. Soc., 63, 552, 10.1007/BF02645752 Li, 2007, Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors, Biotechnol. Bioeng., 98, 764, 10.1002/bit.21489 Lu, 2012, Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes, Biotechnol. Bioeng., 109, 1651, 10.1002/bit.24447 Mantzalis, 2011, Filtering carbon dioxide through carbon nanotubes, Chem. Phys. Lett., 506, 81, 10.1016/j.cplett.2011.02.054 Mata, 2010, Microalgae for biodiesel production and other applications: a review, Renew. Sustain. Energy Rev., 14, 217, 10.1016/j.rser.2009.07.020 Metsoviti, 2019, Effect of nitrogen concentration, two stage and prolonged cultivation on growth rate, lipid and protein content of Chlorella vulgaris, J. Chem. Technol. Biotechnol., 10.1002/jctb.5899 Papapolymerou, 2022, Effect of anaerobic digestate on the fatty acid profile and biodiesel properties ofChlorella sorokiniana grown heterotrophically, Sustain. Times, 14, 561, 10.3390/su14010561 Papapolymerou, 2022, FAME and bio-oil properties and carbon yield coefficients of Chlorella sorokiniana cultivated heterotrophically with industrial effluents, Sust. Chem. Pharm., 30 Perez-Garcia, 2015, Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics, Alg. Bioref., 61, 10.1007/978-3-319-20200-6_3 Perez-Garcia, 2011, Heterotrophic cultures of microalgae: metabolism and potential products, Water Res., 45, 11, 10.1016/j.watres.2010.08.037 Rhee, 2001, Determination of total nitrogen, Cur. protoc. in food anal. chem. Rouwenhorst, 1991, Determination of protein concentration by total organic carbon analysis, J. Biochem. Biophys. Methods, 22, 119, 10.1016/0165-022X(91)90024-Q 2007, Sammlung von Algenkulturen der Universität göttingen, Culture Collection of Algae Stehlik-Barry, 2017 Xiong, 2008, High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production, Appl. Microbiol. Biotechnol., 78, 29, 10.1007/s00253-007-1285-1 Yun, 2020, Characterization of Chlorella sorokiniana and Chlorella vulgaris fatty acid components under a wide range of light intensity and growth temperature for their use as biological resources, Heliyon, 6, 10.1016/j.heliyon.2020.e04447