F-quadratic stochastic operators

U. A. Rozikov1, U. U. Zhamilov2
1Romanovskii Mathematical Institute, Tashkent, Uzbekistan
2Romitan, Bukhara Region, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. N. Bernstein, “The solution of a mathematical problem related to the theory of heredity,” Uchen. Zapiski Nauchno-Issled. Kafedry Ukr. Otd. Matem. 1, 83–115 (1924).

R. N. Ganikhodzhaev, “Quadratic stochastic operators, Lyapunov functions, and tournaments,” Mat. Sb. 183(8), 119–140 (1992) [Russian Acad. Sci. Sb. Math. 76 (2), 489–506 (1993)].

R. N. Ganikhodzhaev, “On the definition fo quadratic bistochastic operators,” Uspekhi Mat. Nauk 48(4), 231–232 (1993) [Russian Math. Surveys 48 (4), 244–246 (1993)].

R. N. Ganikhodzhaev, “Map of fixed points and Lyapunov functions for a class of discrete dynamical systems,” Mat. Zametki 56(5), 40–49 (1994) [Math. Notes 56 (5), 1125–1131 (1994)].

H. Kesten, “Quadratic transformations: a model for population growth. I,” Adv. in Appl. Probab. 2(1), 1–82 (1970); “Quadratic transformations: a model for population growth. II,” Adv. in Appl. Probab. 2 (1), 179–228 (1970).

Yu. I. Lyubich, Mathematical Structures in Population Genetics, in Biomathematics (Springer-Verlag, Berlin, 1992), Vol. 22.

R. N. Ganikhodzhaev and D. B. Éshmamatova, “Quadratic automorphisms of a simplex and the asymptotic behavior of their trajectories,” Vladikavkaz. Mat. Zh. 8(2), 12–28 (2006)

R. N. Ganikhodzhaev, “On a family of quadratic stochastic operators acting in S 2,” Dokl. Akad. Nauk UzSSR, No. 1, 3–5 (1989).

U. A. Rozikov and N. B. Shamsiddinov, On Non-Volterra Quadratic Stochastic Operators Generated by a Product Measure, arXiv: math/0608201v1.

P. R. Stein and S. M. Ulam, Nonlinear Transformations Studies on Electronic Computers, in Dissertationes Math. (Rozprawy Mat.) (Polish Acad. Sci., Warsaw, 1964), Vol. 39.

R. N. Ganikhodzhaev and A. I. Éshniyazov, “Biostochastic quadratic operators,” Uzbek. Mat. Zh., No. 3, 29–34 (2004).

N. N. Ganikhodzhaev and R. T. Mukhitdinov, “On a class of quasi-Volterra operators,” Uzbek. Mat. Zh., No. 3–4, 9–12 (2003).

R. N. Ganikhodzhaev and A. M. Zhuraboev, “The set of equilibrium states of quadratic stochastic operators of type V π,” Uzbek. Mat. Zh., No. 3, 23–27 (1998).

R. N. Ganikhodzhaev and A. Z. Karimov, “On the number of vertices of a polyhedron of bistochastic quadratic operators,” Uzbek. Mat. Zh., No. 6, 29–35 (1999).

R. N. Ganikhodzhaev and R. É. Abdurakhmanova, “Description of quadratic automorphisms of finitedimensional simplex,” Uzbek. Mat. Zh., No. 1, 7–16 (2002).

M. I. Zakharevich, “On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex,” Uspekhi Mat. Nauk 33(6), 207–208 (1978) [Russian Math. Surveys 33 (6), 265–266 (1978)].

N. N. Ganikhodzhaev, “On an application of the theory of Gibbs distributions in mathematical genetics,” Dokl. Ross. Akad. Nauk 372(1), 13–16 (2000) [Russian Acad. Sci. Dokl. Math. 61 (3), 321–323 (2000)].

N. N. Ganikhodjaev and U. A. Rozikov, “On quadratic stochastic operators generated by Gibbs distributions,” Regul. Chaotic Dyn. 11(4), 467–473 (2006).