F-limit points in dynamical systems defined on the interval

Piotr Szuca1
1Institute of Mathematics, University of Gdańsk, Gdańsk, Poland

Tóm tắt

Given a free ultrafilter p on ℕ we say that x ∈ [0, 1] is the p-limit point of a sequence (x n ) n∈ℕ ⊂ [0, 1] (in symbols, x = p -lim n∈ℕ x n ) if for every neighbourhood V of x, {n ∈ ℕ: x n ∈ V} ∈ p. For a function f: [0, 1] → [0, 1] the function f p : [0, 1] → [0, 1] is defined by f p (x) = p -lim n∈ℕ f n (x) for each x ∈ [0, 1]. This map is rarely continuous. In this note we study properties which are equivalent to the continuity of f p . For a filter F we also define the ω F -limit set of f at x. We consider a question about continuity of the multivalued map x → ω (x). We point out some connections between the Baire class of f p and tame dynamical systems, and give some open problems.

Từ khóa


Tài liệu tham khảo

Bartoszynski T., Judah H., Set Theory, A K Peters, Wellesley, 1995 Blass A., Ultrafilters: where topological dynamics = algebra = combinatorics, Topology Proc., 1993, 18, 33–56 Bourgain J., Fremlin D.H., Talagrand M., Pointwise compact sets of Baire-measurable functions, Amer. J. Math., 1978, 100(4), 845–886 Bruckner A.M., Ceder J., Chaos in terms of the map x → ω(x; f), Pacific J. Math., 1992, 156(1), 63–96 Fedorenko V.V., Šarkovskii A.N., Smítal J., Characterizations of weakly chaotic maps of the interval, Proc. Amer. Math. Soc., 1990, 110(1), 141–148 García-Ferreira S., Sanchis M., Ultrafilter-limit points in metric dynamical systems, Comment. Math. Univ. Carolin., 2007, 48(3), 465–485 Glasner E., Enveloping semigroups in topological dynamics, Topology Appl., 2007, 154(11), 2344–2363 Glasner E., Megrelishvili M., Hereditarily non-sensitive dynamical systems and linear representations, Colloq. Math., 2006, 104(2), 223–283 Glasner E., Megrelishvili M., New algebras of functions on topological groups arising from G-spaces, Fund. Math., 2008, 201(1), 1–51 Nuray F., Ruckle W.H., Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 2000, 245(2), 513–527 Rosenthal H.P., A characterization of Banach spaces containing l 1, Proc. Nat. Acad. Sci. U.S.A., 1974, 71, 2411–2413 Schweizer B., Smítal J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 1994, 344(2), 737–754 Todorcevic S., Topics in Topology, Lecture Notes in Math., 1652, Springer, Berlin, 1997