Extrusion-based additive manufacturing of fungal-based composite materials using the tinder fungus Fomes fomentarius

Springer Science and Business Media LLC - Tập 8 - Trang 1-11 - 2021
Huaiyou Chen1, Amanmyrat Abdullayev1, Maged F. Bekheet1, Bertram Schmidt2, Isabel Regler2, Carsten Pohl2, Cekdar Vakifahmetoglu3, Mathias Czasny1, Paul H. Kamm4, Vera Meyer2, Aleksander Gurlo1, Ulla Simon1
1Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Berlin, Germany
2Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Berlin, Germany
3Department of Materials Science and Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey
4Institute of Applied Materials, Helmholtz-Zentrum Berlin Für Materialien Und Energie, Berlin, Germany

Tóm tắt

Recent efforts in fungal biotechnology aim to develop new concepts and technologies that convert renewable plant biomass into innovative biomaterials. Hereby, plant substrates become metabolized by filamentous fungi to transform them into new fungal-based materials. Current research is thus focused on both understanding and optimizing the biology and genetics underlying filamentous fungal growth and on the development of new technologies to produce customized fungal-based materials. This manuscript reports the production of stable pastes, composed of Fomes fomentarius mycelium, alginate and water with 71 wt.% mycelium in the solid content, for additive manufacturing of fungal-based composite materials. After printing complex shapes, such as hollow stars with up to 39 mm in height, a combination of freeze-drying and calcium-crosslinking processes allowed the printed shapes to remain stable even in the presence of water. The printed objects show low bulk densities of 0.12 ± 0.01 g/cm3 with interconnected macropores. This work reports for the first time the application of mycelium obtained from the tinder fungus F. fomentarius for an extrusion-based additive manufacturing approach to fabricate customized light-weight 3D objects. The process holds great promise for developing light-weight, stable, and porous fungal-based materials that could replace expanded polystyrene produced from fossil resources.

Tài liệu tham khảo

Islam MR, Tudryn G, Bucinell R, Schadler L, Picu RC. Stochastic continuum model for mycelium-based bio-foam. Mater Des. 2018;160:549–56. https://doi.org/10.1016/j.matdes.2018.09.046. Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M, de Vries RP, Endy D, Frisvad JC, Gunde-Cimerman N, et al. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol Biotechnol. 2020;7:5. https://doi.org/10.1186/s40694-020-00095-z. Joshi K, Meher MK, Poluri KM. Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications. ACS Appl Bio Mater. 2020;3:1884–92. https://doi.org/10.1021/acsabm.9b01047. Jones M, Mautner A, Luenco S, Bismarck A, John S. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater Des. 2020;187: 108397. https://doi.org/10.1016/j.matdes.2019.108397. Pelletier MG, Holt GA, Wanjura JD, Bayer E, McIntyre G. An Evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind Crops Prod. 2013;51:480–5. https://doi.org/10.1016/j.indcrop.2013.09.008. Mosler J Fungus as a sound absorber. 3 Research News, Fraunhofer, January 4, 2021, https://www.fraunhofer.de/en/press/research-news/2021/january-2021/fungus-as-a-sound-absorber.html Sekar V, Fouladi MH, Namasivayam SN, Sivanesan S. Additive manufacturing: a novel method for developing an acoustic panel made of natural fiber-reinforced composites with enhanced mechanical and acoustical properties. J Eng. 2019;2019:1–19. https://doi.org/10.1155/2019/4546863. Jones M, Bhat T, Kandare E, Thomas A, Joseph P, Dekiwadia C, Yuen R, John S, Ma J, Wang C-H. Thermal degradation and fire properties of fungal mycelium and mycelium—biomass composite materials. Sci Rep. 2018;8:17583. https://doi.org/10.1038/s41598-018-36032-9. Sathiyaseelan A, Shajahan A, Kalaichelvan PT, Kaviyarasan V. Fungal chitosan based nanocomposites sponges—an alternative medicine for wound dressing. Int J Biol Macromol. 2017;104:1905–15. https://doi.org/10.1016/j.ijbiomac.2017.03.188. Henning LM, Simon U, Abdullayev A, Schmidt B, Pohl C, Guitar TN, Vakifahmetoglu C, Meyer V, Bekheet MF, Gurlo A. Effect of fomes fomentarius cultivation conditions on its adsorption performance for anionic and cationic dyes. ACS Omega. 2021. https://doi.org/10.1021/acsomega.1c05748. Jones M, Gandia A, John S, Bismarck A. Leather-like material biofabrication using fungi. Nat Sustain. 2021;4:9–16. https://doi.org/10.1038/s41893-020-00606-1. Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P. Fungi as source for new bio-based materials: a patent review. Fungal Biol Biotechnol. 2019;6:17. https://doi.org/10.1186/s40694-019-0080-y. Manan S, Ullah MW, Ul-Islam M, Atta OM, Yang G. Synthesis and applications of fungal mycelium-based advanced functional materials. J Bioresour Bioprod. 2021;6:1–10. https://doi.org/10.1016/j.jobab.2021.01.001. Tišma M, Žnidaršič-Plazl P, Šelo G, Tolj I, Šperanda M, Bucić-Kojić A, Planinić M. Trametes versicolor in lignocellulose-based bioeconomy: state of the art challenges and opportunities. Bioresour Technol. 2021;330: 124997. https://doi.org/10.1016/j.biortech.2021.124997. Ross, P.; Francisco, S.; Scullin, M.; Francisco, S.; Wenner, N.; Chase, J.; Miller, Q.; Saltidos, R.; Francisco, S.; McGaughy, P.Mycelium growth bed with perforation layer and related method for creating a uniform sheet of mycelium from a solid-state medium. https://patents.google.com/patent/US20200196541A1/en Raudaskoski M. The central role of septa in the basidiomycete schizophyllum commune hyphal morphogenesis. Fungal Biol. 2019;123:638–49. https://doi.org/10.1016/j.funbio.2019.05.009. Synytsya A, Novák M. Structural diversity of fungal glucans. Carbohyd Polym. 2013;92:792–809. https://doi.org/10.1016/j.carbpol.2012.09.077. Mind the Fungi (2020), Edited by Vera Meyer and Regine Rapp. Universitätsverlag TU Berlin. ISBN 978-3-7983-3168-6 Bhardwaj A, Vasselli J, Lucht M, Pei Z, Shaw B, Grasley Z, Wei X, Zou N. 3D Printing of biomass-fungi composite material: a preliminary study. Manuf Lett. 2020;24:96–9. https://doi.org/10.1016/j.mfglet.2020.04.005. Blast Studio - 3d Printed Mycelium Objects. https://www.blast-studio.com. Accessed 6 July 2021. Burry J, Sabin JE, Sheil B, Skavara M (2020) Fabricate 2020. UCL Press https://discovery.ucl.ac.uk/id/eprint/10094460/1/Fabricate-2020.pdf Tavares, F. Could Future Homes on the Moon and Mars Be Made of Fungi? http://www.nasa.gov/feature/ames/myco-architecture. Accessed 8 July 2021. Wösten HAB, Krijgsheld P, Montalti M, Läkk H Growing Fungi Structures in Space. 17 https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-HAB-ARI-16-6101-Fungi_structures.pdf Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD. Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos B Eng. 2019;174: 106956. https://doi.org/10.1016/j.compositesb.2019.106956. Li H Study of hydrogels for 3D printing of constructs with strong interfacial bonding. 2018, https://hdl.handle.net/10356/82592 Nanyang Technological University Feilden, E. Additive manufacturing of ceramics and ceramic composites via robocasting. 200. Bahrami A, Simon U, Soltani N, Zavareh S, Schmidt J, Pech-Canul MI, Gurlo A. Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash. Green Chem. 2017;19:188–95. https://doi.org/10.1039/C6GC02153K. Shao G, Hanaor DAH, Shen X, Gurlo A. Freeze casting: from low-dimensional building blocks to aligned porous structures—a review of novel materials, methods, and applications. Adv Mater. 2020;32:1907176. https://doi.org/10.1002/adma.201907176. Negussey D, Jahanandish M. Comparison of some engineering properties of expanded polystyrene with those of soils (with discussion and closure). Transportation Research Record, 1993 (1418). Overview of Materials for Expanded Polystyrene (EPS): http://www.matweb.com/search/DataSheet.aspx?MatGUID=5f099f2b5eeb41cba804ca0bc64fa62f&ckck=1 Accessed 13 Sep 2021. Shao G, Hanaor DAH, Wang J, Kober D, Li S, Wang X, Shen X, Bekheet MF, Gurlo A. Polymer-derived SiOC integrated with a graphene aerogel as a highly stable Li-Ion battery anode. ACS Appl Mater Interfaces. 2020;12:46045–56. https://doi.org/10.1021/acsami.0c12376. Song D, Park S-J, Kang HW, Park SB, Han J-I. Recovery of Lithium(I), Strontium(II), and Lanthanum(III) Using Ca–Alginate Beads. J Chem Eng Data. 2013;58:2455–64. https://doi.org/10.1021/je400317v. Kühbeck D, Mayr J, Häring M, Hofmann M, Quignard F, Díaz DD. Evaluation of the nitroaldol reaction in the presence of metal ion-crosslinked alginates. New J Chem, 2015;39(3):2306-2315. https://doi.org/10.1039/C4NJ02178A Torres E, Mata YN, Blázquez ML, Muñoz JA, González F, Ballester A. Gold and silver uptake and nanoprecipitation on calcium alginate beads. Langmuir. 2005;21:7951–8. https://doi.org/10.1021/la046852k. Lecellier A, Mounier J, Gaydou V, Castrec L, Barbier G, Ablain W, Manfait M, Toubas D, Sockalingum GD. Differentiation and identification of filamentous fungi by high-throughput FTIR spectroscopic analysis of mycelia. Int J Food Microbiol. 2014;168–169:32–41. https://doi.org/10.1016/j.ijfoodmicro.2013.10.011. Salman A, Tsror L, Pomerantz A, Moreh R, Mordechai S, Huleihel M. FTIR spectroscopy for detection and identification of fungal phytopathogenes. Spectroscopy. 2010;24:261–7. https://doi.org/10.1155/2010/723489. Sivakesava S, Irudayaraj J, DebRoy C. Differentiation of microorganisms by FTIR-ATR and NIR spectroscopy. Trans ASAE. 2004;47:951–7. https://doi.org/10.13031/2013.16074. Feigenson GW. Calcium ion binding between lipid bilayers: the four-component system of phosphatidylserine, phosphatidylcholine, calcium chloride, and water. Biochemistry. 1989;28:1270–8. https://doi.org/10.1021/bi00429a048. Jones M, Weiland K, Kujundzic M, Theiner J, Kählig H, Kontturi E, John S, Bismarck A, Mautner A. Waste-derived low-cost mycelium nanopapers with tunable mechanical and surface properties. Biomacromol. 2019;20:3513–23. https://doi.org/10.1021/acs.biomac.9b00791. Soares JP, Santos JE, Chierice GO, Cavalheiro ETG. Thermal behavior of alginic acid and its sodium salt. Eclet Quím. 2004;29:57–64. https://doi.org/10.1590/S0100-46702004000200009. Therriault D, White SR, Lewis JA. Rheological behavior of fugitive organic inks for direct-write assembly. Appl Rheol. 2007. https://doi.org/10.1515/arh-2007-0001. García Moreno F, Fromme M, Banhart J. Real-time X-ray radioscopy on metallic foams using a compact micro-focus source. Adv Eng Mater. 2004;6:416–20. https://doi.org/10.1002/adem.200405143. Vakifahmetoglu C, Semerci T, Soraru GD. Closed porosity ceramics and glasses. J Am Ceram Soc. 2020;103:2941–69. https://doi.org/10.1111/jace.16934.