Extremely efficient flexible organic light-emitting diodes with modified graphene anode

Nature Photonics - Tập 6 Số 2 - Trang 105-110 - 2012
Tae Hee Han1, Youngbin Lee2, Mi-Ri Choi1, Seonghoon Woo1, Sang-Hoon Bae2, Byung Hee Hong3, Jong‐Hyun Ahn2, Tae‐Woo Lee1
1Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Gyungbuk, Republic of Korea
2SKKU Advanced Institute of Nanotechnology (SAINT), Center for Human Interface Nano Technology (HINT) and School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Gyeonggi-do, Republic of Korea
3Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

Rogers, J. A. Electronic materials: making graphene for macroelectronics. Nature Nanotech. 3, 254–255 (2008).

Wu, J. et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43–48 (2010).

Sun, T. et al. Multilayered graphene used as anode of organic light emitting devices. Appl. Phys. Lett. 96, 133301 (2010).

Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

Zhang, Y., Tan, Y., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–205 (2005).

Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

Lee, Y. et al. Wafer-scale synthesis and transfer of graphene films. Nano. Lett. 10, 490–493 (2010).

Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

Reina, A. et al. Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).

Matyba, P. et al. Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4, 637–642 (2010).

Arco, L. G. D. et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4, 2865–2873 (2010).

Yin, Z. et al. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4, 5263–5268 (2010).

Wu, J. et al. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302 (2008).

Choe, M. et al. Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org. Electron. 11, 1864–1869 (2010).

Wang, X., Zhi, L. & Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).

Kumar, A. & Zhou, C. The race to replace tin-doped indium oxide: which material will win? ACS Nano 4, 11–14 (2010).

Choi, M-R. et al. Soluble self-doped conducting polymer compositions with tunable work function as hole injection/extraction layers in organic optoelectronics. Angew. Chem. Int. Ed. 50, 6274–6277 (2011).

Li, J. et al. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett. 6, 2472–2477 (2006).

Chien, Y-M., Lefevre, F., Shin, I. & Izquierdo, R. A solution processed top emission OLED with transparent carbon nanotube electrodes. Nanotechnology 21, 134020 (2010).

Helender, M. G. et al. Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. Science 332, 944–947 (2011).

Poplavskyy, D., Su, W. & So, F. Bipolar charge transport, injection, and trapping studies in a model green-emitting polyfluorene copolymer. J. Appl. Phys. 98, 014501 (2005).

Campbell, A. J., Bradley, D. D. C. & Antoniadisc, H. Quantifying the efficiency of electrodes for positive carrier injection into poly(9,9-dioctylfluorene) and representative copolymers. J. Appl. Phys. 89, 3343–3351 (2001).

Cheung, C. H., Kwok, K. C., Tse, S. C. & So, S. K. Determination of carrier mobility in phenylamine by time-of-flight, dark-injection, and thin film transistor techniques. J. Appl. Phys. 103, 093705 (2008).

Harding, M. J., Poplavskyy, D., Choong, V-E., So, F. & Campbell, A. J. Variations in hole injection due to fast and slow interfacial traps in polymer light-emitting diodes with interlayers. Adv. Funct. Mater. 20, 119–130 (2010).

Jong, M. P. D., IJzendoorn, L. J. V. & Voigt, M. J. A. D. Stability of the interface between indium-tin-oxide and poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 77, 2255–2257 (2000).

Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater. 8, 494–499 (2009).