Phân tích xu hướng mưa cực đoan tại lưu vực Macta, Tây Bắc Algeria

Arabian Journal of Geosciences - Tập 14 - Trang 1-14 - 2021
Benali Benzater1, Abdelkader Elouissi1, Ismail Dabanli2,3, Boumediene Benaricha1, Abderrahmane Hamimed1
1Biological Systems and Geomatics Research Laboratory (LRSBG), Faculty of Natural and Life Sciences, Mustapha Stambouli University of Mascara, Mascara, Algeria
2School of Engineering and Natural Sciences, Civil Engineering Department, Istanbul Medipol University, Istanbul, Turkey
3Climate Change Researches Application and Research Center (IKLIMER), Istanbul Medipol University, Istanbul, Turkey

Tóm tắt

Phía bắc Algeria chịu ảnh hưởng của các trận lũ do mưa cực đoan. Việc phát hiện các xu hướng này, ở các quy mô không gian và thời gian khác nhau, là bước quan trọng trong bối cảnh biến đổi khí hậu. Trong bài viết này, phương pháp Mann-Kendall được sử dụng để phát hiện xu hướng của lượng mưa tối đa hàng ngày tại 41 trạm mưa trong lưu vực Macta (Tây Bắc Algeria) trong khoảng thời gian 41 năm (1970–2010). Kết quả cho thấy có các xu hướng hàng tháng trái ngược nhau; một sự gia tăng đáng kể, ở mức độ tin cậy 5% (10%), được phát hiện vào tháng 3, tháng 5, tháng 6, tháng 11 và tháng 12, với tỷ lệ tương ứng là 29% (7%), 24% (32%), 17% (24%), 12% (0%), và 10% (20%) các trạm. Về cường độ mưa, một sự gia tăng đã được phát hiện vào tháng 4, tháng 7, tháng 8, tháng 9, tháng 10 và tháng 11. Rõ ràng rằng các tháng 8 và 9, đại diện cho sự khởi đầu của mùa thu, được đánh dấu bởi sự gia tăng lớn nhất trong cường độ mưa, điều này lý giải cho những trận lũ thảm khốc xảy ra tại lưu vực của chúng tôi mỗi năm. Các xu hướng đi lên đáng kể tương tự được phát hiện cho mùa thu và mùa đông, kèm theo sự gia tăng về lượng trong mùa đầu tiên (mùa thu). Hằng năm, một xu hướng tăng đáng kể, ở mức độ tin cậy 5% (10%), trong lượng mưa cực đoan với 20% (15%) các trạm, đã được phát hiện. Hơn nữa, một sự giảm nhẹ về lượng đã được quan sát.

Từ khóa

#mưa cực đoan #biến đổi khí hậu #phương pháp Mann-Kendall #lưu vực Macta #Algeria

Tài liệu tham khảo

Abdelkarim A, Gaber AFD (2019) Flood risk assessment of the Wadi Nu’man basin, Mecca, Saudi Arabia (during the period, 1988–2019) based on the integration of geomatics and hydraulic modeling: a case study. Water 2019(11):1887. https://doi.org/10.3390/w11091887www.mdpi.com/journal/water. Accessed Jan 2020 Ahmad I, Zhang F, Tayyab M, Anjum MN, Zaman M, Liu J, Farid FU, Saddique Q (2018) Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin. Atmos Res 213(2018):346–360. https://doi.org/10.1016/j.atmosres.2018.06.019 Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232. https://doi.org/10.1038/nature01092 Almazroui M, Saeed S (2020) Contribution of extreme daily precipitation to total rain over the Arabian Peninsula. Atmos Res 231(2020):104672. https://doi.org/10.1016/j.atmosres.2019.104672 Basarir A, Arman H, Hussein S, Murad A, Aldahan A, Abdulla Al-Abri M (2018) Trend detection in annual temperature and precipitation using Mann–Kendall test—a case study to assess climate change in Abu Dhabi, United Arab Emirates. Springer International Publishing AG, part of Springer Nature 2018. Buildings Symposium (ISBS 2017). https://doi.org/10.1007/978-3-319-64349-6_1 Benzater B, Elouissi A, Benaricha B, Habi M (2019) Spatio-temporal trends in daily maximum rain in northwestern Algeria (Macta watershed case, Algeria). Arab J Geosci 12:1–18. https://doi.org/10.1007/s12517-019-4488-8 Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 6:181–185. https://doi.org/10.1038/ngeo1731. Berolo W, Laborde JP (2003) Statistics of extreme daily rains in the Alpes-Maritimes.SophiaAntipolis University. Nice. Explanatory note for the map at 1/200 000 and its annexes Bhatla R, Verma S, Pandey R, Tripathi A (2019) Evolution of extreme rain events over Indo-Gangetic plain in changing climate during 1901–2010. J Earth Syst Sci 128:120 cIndian Academy of Sciences. https://doi.org/10.1007/s12040-019-1162-1 Blanchet J, Molinié G, Touati J (2018) Spatial analysis of trend in extreme daily rain in southern France. Clim Dyn. https://doi.org/10.1007/s00382-016-3122-7 Breugem AJ, Wesseling JG, Oostindie K, Ritsema CJ (2020) Meteorological aspects of heavy precipitation in relation to floods – an overview. Earth Sci Rev 204(2020):103171. https://doi.org/10.1016/j.earscirev.2020.103171 Byun K, Hamlet AF (2020) A risk-based analytical framework for quantifying non-stationary flood risks and establishing infrastructure design standards in a changing environment. J Hydrol 584(2020):124575. https://doi.org/10.1016/j.jhydrol.2020.124575 Caloiero T, Coscarelli R, Ferrari E, Sirangelo B (2016) Trends in the daily precipitation categories of Calabria (southern Italy). ScienceDirect. Procedia Eng 162(2016):32–38 Carvalho JRP, Assad ED, Oliveira AF, Pinto HS (2014) Annual maximum daily rain trends in the Midwest, southeast and southern Brazil in the last 71 years. Weather Clim Extremes 5–6:7–15. https://doi.org/10.1016/j.wace.2014.10.001 Chandrashekar VD, Shetty A (2018) Trends in extreme rain over ecologically sensitive Western Ghats and coastal regions of Karnataka: an observational assessment. Arab J Geosci 11:327. https://doi.org/10.1007/s12517-018-3700-6 Chattopadhyay R, Thomas A, Phani R, Joseph S, Sahai AK (2019) A study on the capability of the NCEP-CFS model in simulating the frequency and intensity of high-intensity rain events over Indian region in the high and low resolutions. Model Earth Syst Environ 5:85–100. https://doi.org/10.1007/s40808-018-0520-3 Chen W, Huang C, Wang L, Li D (2018) Climate extremes and their impacts on interannual vegetation variabilities: a case study in Hubei Province of Central China. Remote Sens 10:477. https://doi.org/10.3390/rs10030477www.mdpi.com/journal/remotesensing. Accessed Mar 2020 Cooper RT (2019) Projection of future precipitation extremes across the Bangkok Metropolitan Region. Heliyon 5(2019):e01678. https://doi.org/10.1016/j.heliyon.2019.e01678 Drobinski P, Alonzo B, Bastin S, Da Silva N, Muller C (2016) Scaling of precipitation extremes with temperature in the French Mediterranean region: what explains the hook shape? J Geophys Res Atmos. https://doi.org/10.1002/2015JD023497 Elouissi A (2016) Changement climatique, impacts et vulnérabilité. Cas du bassin versant de la Macta. Doctoral thesis. Abou Bakr Belkaid University of Tlemcen. http://dspace.univ-tlemcen.dz/bitstream/112/15065/1/Doc.Hyd.Elouissi.pdf. Accessed Dec 2019 Elouissi A, Şen Z, Habi M (2016) Algerian rainfall innovative trend analysis and its implications to Mactawatershed. Arab J Geosci 9, 303. https://doi.org/10.1007/s12517-016-2325-x Elouissi A, Habi M, Benaricha B, Boualem SA (2017) Climate change impact on rainfall spatiotemporal variability (Macta watershed case Algeria). Arab J Geosci. https://doi.org/10.1007/s12517-017-3264-x Ghosh S, Das D, Kao SC, Ganguly AR (2012) Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nat Clim Chang 2:86–91. https://doi.org/10.1038/nclimate1327 Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18:1326–1350 Haan CT (1977) Statistical methods in hydrology. Iowa State University Press, 1977. http://hdl.handle.net/1969.3/24532. Accessed Jan 2020 IPCC, Intergovernmental Panel on Climate Change (2013) In: Stocker TF, Qin Q, Plattner GK, Tignor M, Allen SK, Boschung J, Midgley PM et al (eds) The physical science basis.Contribution of working group I to the fifth assessment report of the IPCC. Cambridge University Press, Cambridge Kendall M (1975) Rank Correlation Methods, 4th edn. Charles Griffin, London Khaliq MN, Ouarda TBMJ, Ondo J-C, Gachon P, Bobée B (2006) Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review. J Hydrol 329(3–4). https://doi.org/10.1016/j.jhydrol.2006.03.004 Lorenzo MN, Alvarez I (2020) Climate change patterns in precipitation over Spain using CORDEX projections for 2021–2050. Sci Total Environ 723(2020):138024. https://doi.org/10.1016/j.scitotenv.2020.138024 Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259 Meddi H, Meddi M, Assani AA (2014) Study of drought in seven Algerian plains. Arab J Sci Eng 39:339–359. https://doi.org/10.1007/s13369-013-0827-3 Min SK, Zhang X, Zwiers FW, Hegeri GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:2011 Mishra V, Wallace JM, Lettenmaier DP (2012) Relationship between hourly extreme precipitation and local air temperature in the United States. Geophys Res Lett 39. https://doi.org/10.1029/2012GL052790 Mukherjee S, Aadhar S, Stone D, MishraV (2018) Increase in extreme precipitation events under anthropogenic warming in India. Weather Clim Extremes 20(C). https://doi.org/10.1016/j.wace.2018.03.005 Norrant C, Douguedroit A (2006) Monthly and daily precipitation trends in the Mediterranean (1950–2000). Theor Appl Climatol 83:89–106. https://doi.org/10.1007/s00704-005-0163-y Ouarda TBMJ, Charron C, Niranjan Kumar K, Marpu PR, Ghedira H, Molini A, Khayal I (2014) Evolution of the rainfall regime in the United Arab Emirates. J Hydrol 514:258–270 Roderick TP, Wasko C, Sharma A (2019) Atmospheric moisture measurements explain increases in tropical rainfall extremes. Geophys Res Lett 46(1). https://doi.org/10.1029/2018GL080833. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63(324):1379–1389 Şen Z (2012) Innovative trend analysis methodology. J Hydrol Eng 17(9):1042–1046. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556 Shao Y, Mu X, He Y, Sun W, Zhao G, Gao P (2019) Spatiotemporal variations of extreme precipitation events at multi-time scales in the Qinling-Daba mountains region, China. Quat Int 525:89–102. https://doi.org/10.1016/j.quaint.2019.07.029 Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138. https://doi.org/10.3354/cr00953. UNFCCC (United Nations Framework Convention on Climate Change) (2015) Decision 1/CP.21: adoption of the Paris Agreement. Paris Climate Change Conference; 2015 Nov 30–Dec 11; Paris, France Wang Y, Xu Y, Tabari H, Wang J, Wang Q, Song S, Hu Z (2020) Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmos Res 213(2020):104673. https://doi.org/10.1016/j.atmosres.2019.104673 Westmacott JR, Burn DH (1997) Climate change effects on the hydrologic regime within the Churchill-Nelson River Basin. J Hydrol 202(263–279):1997 Westra S, Alexander LV, Zwiers FW (2013) Global increasing trends in annual maximum daily precipitation. J Clim 26(11):3904–3918. https://doi.org/10.1175/JCLI-D-12-00502.1 Yaduvanshi A, Kulkarni A, Bendapudi R, Haldar K (2020) Observed changes in extreme rain indices in semiarid and humid regions of Godavari basin, India: risks and opportunities. Nat Hazards. https://doi.org/10.1007/s11069-020-04006-8 Zhang C, Wang Z, Zhou B, Li Y, Tang H, Xiang B (2018) Trends in autumn rain of West China from 1961 to 2014. Theor Appl Climatol. https://doi.org/10.1007/s00704-017-2361-9