Extreme Points and Support Points of Families of Harmonic Bloch Mappings
Tóm tắt
In this paper, the main aim is to discuss the existence of the extreme points and support points of families of harmonic Bloch mappings and little harmonic Bloch mappings. First, in terms of the Bloch unit-valued set, we prove a necessary condition for a harmonic Bloch mapping (resp. a little harmonic Bloch mapping) to be an extreme point of the unit ball of the normalized harmonic Bloch spaces (resp. the normalized little harmonic Bloch spaces) in the unit disk 𝔻. Then we show that a harmonic Bloch mapping f is a support point of the unit ball of the normalized harmonic Bloch spaces in 𝔻 if and only if the Bloch unit-valued set of f is not empty. We also give a characterization for the support points of the unit ball of the harmonic Bloch spaces in 𝔻.
Tài liệu tham khảo
Abu-Muhanna, Y.: On extreme points of subordination families. Proc. Amer. Math. Soc. 87, 439–443 (1983)
Abu-Muhanna, Y., Hallenbeck, D.J.: Subordination families and extreme points. Trans. Amer. Math. Soc. 308, 83–89 (1988)
Anderson, J.M., Clunie, J., Pommerenke, C.: On Bloch functions and normal functions. J. Reine Angew. Math. 270, 12–37 (1974)
Bonk, M.: The support points of the unit ball in Bloch space. J. Funct. Analysis 123, 318–335 (1994)
Brannan, D.A., Clunie, J.G., Kirwan, W.E.: On the coefficient problem for functions of bounded boundary rotation. Ann. Acad. Sci. Fenn. A. I(523), 1–18 (1973)
Brickman, L., Hallenbeck, D.J., MacGregor, T.H., Wilken, D.R.: Convex hulls and extreme points of families of starlike and convex mappings. Trans. Amer. Math. Soc. 185, 413–428 (1973)
Cima, J.A., Wogen, W.R.: Extreme points of the unit ball of the Bloch space \({\mathscr{B}}_{0}\). Michigan Math. J. 25, 213–222 (1978)
Colonna, F.: The Bloch constant of bounded harmonic mappings. Indiana Univ. Math. J. 38, 829–840 (1989)
Colonna, F.: Bloch and normal functions and their relation. Rend. Circ. Mat. Palermo II(38), 161–180 (1989)
Duren, P.: Univalent Functions. Springer, New York, Berlin, Heidelberg, Tokyo (1982)
Duren, P.: Harmonic Mappings in the Plane. Cambridge University Press, New York (2004)
Hallenbeck, D.J., Hallenbeck, K.T.: Classes of analytic functions subordinate to convex functions and extreme points. J. Math. Anal. Appl. 282, 792–800 (2003)
Hallenbeck, D.J., Macgregor, T.H.: Subordination and extreme-point theory. Pacific J. Math. 50, 455–468 (1974)
Kayumov, I.R., Wirths, K.-J.: On the sum of squares of the coefficients of Bloch functions. Monatsh Math. 190(1), 123–135 (2019)
Kayumov, I.R., Wirths, K.-J.: Coefficients problems for Bloch functions. Anal. Math. Phys. 9, 1069–1085 (2019)
MacGregor, T.H.: Applications of extreme point theory to univalent functions. Michigan Math. J. 19, 361–376 (1972)
MacGregor, T.H.: Hull subordination and extremal problems for starlike and spirallike mappings. Trans. Amer. Math Soc. 183, 499–510 (1973)
Ruscheweyh, S.T., Wirths, K.-J.: On extreme Bloch functions with prescribed critical points. Math. Z. 180, 91–105 (1982)
Shell-Small, T.: Complex Polynomials. Cambridge University Press, New York (2002)
Sugawa, T., Terada, T.: A coefficient inequality for Bloch functions with application to uniformly locally univalent functions. Monatshefte Math. 156, 167–173 (2009)
Tkaczyńska, K.: On extreme points of subordination families with a convex majorant. J. Math. Anal. Appl. 145, 216–231 (1990)
Wirths, K.-J., Xiao, J.: Recognizing qp,0 functions per Dirichlet space structure. Bull. Belg. Math. Soc. Simon Stevin 8(1), 47–59 (2001)
Zariski, O., Samuel, P.: Commutative Algebra, vol. II. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Priceton, N. J.-Toronto-London-New York (1960)