Extremal Kähler Metrics of Toric Manifolds

Chinese Annals of Mathematics, Series B - Tập 44 - Trang 827-836 - 2023
An-Min Li1, Li Sheng1
1Department of Mathematics, Sichuan University, Chengdu, China

Tóm tắt

This paper is a survey of some recent developments concerning extremal Kähler metrics on Toric Manifolds.

Tài liệu tham khảo

Abreu, M., Kähler geometry of toric varieties and extremal metrics, Internat. J. Math., 9, 1998, 641–651. Apostolov, V., Calderbank, D. M. J., Gauduchon, P. and Tønnesen-Friedman, C. W., Hamiltonian 2-forms in Kähler geometry III, extremal metrics and stability, Invent. Math., 173(3), 2008, 547–601. Berman, R., Darvas, T. and Lu, C. H., Regularity of weak minimizers of the K-energy and applications to properness and K-stability, Ann. Sci. Ec. Norm. Super., 53(4), 2020, 267–289. Boucksom, S., Hisamoto, T. and Jonsson, M., Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble), 67(2), 2017, 743–841. Chen, B., Han, Q., Li, A.-M., et al., Prescribed scalar curvatures for homogeneous toric bundles, Differential Geometry and its Applications, 63, 2019, 186–211. Chen, B., Li, A.-M. and Sheng, L., Uniform K-stability for extremal metrics on toric varieties, J. Diff. Equations, 257, 2014, 1487–1500. Chen, B., Li, A.-M. and Sheng, L., Extremal metrics on toric surfaces, Adv. Math., 340, 2018, 363–405. Chen, X. and Cheng, J., On the constant scalar curvature Kähler metrics (I)–A priori estimates, J. Amer. Math. Soc., 34(4), 2021, 909–936. Chen, X. and Cheng, J., On the constant scalar curvature Kähler metrics (II)-Existence results, J. Amer. Math. Soc., 34(4), 2021, 937–1009. Darvas, T. and Lu, C., Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry, Geom. Topol. 24(4), 2020, 1907–1967. Delcroix, T. with an appendix by Yuji Odaka, Uniform K-stability of polarized spherical varieties, Epijournal Geom. Algebrique, 7, 2023, Art. 9, 27pp. Donaldson, S. K., Scalar curvature and stability of toric varieties, J. Diff. Geom., 62, 2002, 289–349. Donaldson, S. K., Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Handbook of Geometric Analysis, 1, International Press, Boston, 2008. Donaldson, S. K., Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal., 19, 2009, 83–136. Donaldson, S. K., Stability of algebraic varieties and Kähler geometry, Algebraic Geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., 97.1, AMS, Providence, RI, 2018. Donaldson, S. K., Extremal Kähler metrics and convex analysis, LMS Newsletter, 500, 2022, 32–36. Guillemin, V., Kähler structures on toric varieties, J. Diff. Geom., 40, 1994, 285–309. Hisamoto, T., Stability and coercivity for toric polarizations, 2016, arXiv:1610.07998. Li, A.-M., Lian, Z. and Sheng, L., Extremal metrics on toric manifolds and homogeneous toric bundles, J. Reine. Angew. Math., 2023(798), 2023, 237–259. Li, C., Geodesic rays and stability in the cscK problem, Ann. Sci. Éc. Norm. Supér., 55(6), 2022, 1529–1574. Nyström, D. W., Test configurations and Okounkov bodies, Compos. Math., 148(6), 2012, 1736–1756. Székelyhidi, G., Extremal metrics and K-stability, Ph. D. Thesis, 2006, arXiv: math/0611002. Székelyhidi, G. with an appendix by Sebastien Boucksom, Filtrations and test-configurations, Math. Ann., 362, 2015, 451–484. Tian, G., Kähler-Einstein metrics with postive scalar curvature, Invent. Math., 130, 1997, 1–39.