Extrapolation in the scale of generalized reverse Hölder weights
Tóm tắt
We develop a theory of extrapolation for weights that satisfy a generalized reverse Hölder inequality in the scale of Orlicz spaces. This extends previous results by Auscher and Martell (Adv Math 212(1):225–276, 2007) on limited range extrapolation. We then provide several applications of our extrapolation techniques. These applications include new results and new proofs of known results for two weight inequalities for linear and bilinear operators.
Tài liệu tham khảo
Anderson, T.C.: A new sufficient two-weighted bump assumption for \(L^p\) boundedness of Calderón–Zygmund operators. Proc. Am. Math. Soc. 143(8), 3573–3586 (2015)
Auscher, P., Martell, J.M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I. General operator theory and weights. Adv. Math. 212(1), 225–276 (2007)
Conde-Alonso, J.M., Rey, G.: A pointwise estimate for positive dyadic shifts and some applications. Math. Ann. 365(3–4), 1111–1135 (2016)
Cruz-Uribe, D., Martell, J.M., Pérez, C.: Extrapolation from \(A_\infty \) weights and applications. J. Funct. Anal. 213(2), 412–439 (2004)
Cruz-Uribe, D., Martell, J.M., Pérez, C.: Weights, extrapolation and the theory of Rubio de Francia. In: Operator Theory: Advances and Applications, vol. 215, Birkhäuser/Springer, Basel (2011)
Cruz-Uribe, D., Neugebauer, C.J.: The structure of the reverse Hölder classes. Trans. Am. Math. Soc. 347(8), 2941–2960 (1995)
Cruz-Uribe, D., Pérez, C.: On the two-weight problem for singular integral operators. Ann Sc Norm Super Pisa Cl Sci (5) 1(4), 821–849 (2002)
Culiuc, A., Di Plinio, F., Ou, Y.: Domination of multilinear singular integrals by positive sparse forms, Preprint (2016)
Duoandikoetxea, J.: Fourier analysis. In: Graduate Studies in Mathematics. vol. 29. American Mathematical Society, Providence, RI (2001)
García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116. North-Holland Publishing Co., Amsterdam (1985)
Grafakos, L., Martell, J.M.: Extrapolation of weighted norm inequalities for multivariable operators and applications. J. Geom. Anal. 14(1), 19–46 (2004)
Grafakos, L., Torres, R.: Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ. Math. J. 51(5), 1261–1276 (2002)
Harboure, E., Salinas, O., Viviani, B.: Reverse-Hölder classes in the Orlicz spaces setting. Stud. Math. 130(3), 245–261 (1998)
Hoang, C., Moen, K.: Weighted estimates for bilinear fractional integral operators and their commutators. Indiana Univ. Math. J. (to appear). (2016)
Hytönen, T.: The sharp weighted bound for general Calderón–Zygmund operators. Ann. Math. (2) 175(3), 1473–1506 (2012)
Hytönen, T., Roncal, L., Tapiola, O.: Quantitative weighted estimates for rough homogeneous singular integrals. Isr. J. Math. 218(1), 133–164 (2017)
Kenig, C., Stein, E.M.: Multilinear estimates and fractional integration. Math. Res. Lett. 6(1), 1–15 (1999)
Lacey, M.: An elementary proof of the \(A_2\) bound. Isr. J. Math. 217(1), 181–195 (2017)
Lerner, A., Ombrosi, S., Pérez, C., Torres, R., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory. Adv. Math. 220(4), 1222–1264 (2009)
Lerner, A.K.: On an estimate of Calderón-Zygmund operators by dyadic positive operators. J. Anal. Math. 121, 141–161 (2013)
Lerner, A.K., Nazarov, F.: Intuitive dyadic calculus: the basics. Preprint, (2015)
Liu, L., Luque, T.: A \(B_p\) condition for the strong maximal function. Trans. Am. Math. Soc. 366(11), 5707–5726 (2014)
Martell, J.M., Prisuelos-Arribas, C.: Weighted hardy spaces associated with elliptic operators. Part I: weighted norm inequalities for conical square functions. Trans. Am. Math. Soc. 369(6), 4193–4233 (2017)
Moen, K.: Weighted inequalities for multilinear fractional integral operators. Collect. Math. 60(2), 213–238 (2009)
Moen, K.: New weighted estimates for bilinear fractional integral operators. Trans. Am. Math. Soc. 366(2), 627–646 (2014)
Neugebauer, C.J.: Inserting \(A_{p}\)-weights. Proc. Am. Math. Soc. 87(4), 644–648 (1983)
Pérez, C.: Two weighted inequalities for potential and fractional type maximal operators. Indiana Univ. Math. J. 43(2), 663–683 (1994)
Pérez, C.: On sufficient conditions for the boundedness of the Hardy–Littlewood maximal operator between weighted \(L^p\)-spaces with different weights. Proc. Lond. Math. Soc. (3) 71(1), 135–157 (1995)
Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces. In: Monographs and textbooks in pure and applied mathematics. vol. 146. Marcel Dekker Inc., New York (1991)
Rubio de Francia, J.L.: Factorization and extrapolation of weights. Bull. Am. Math. Soc. (N.S.) 7(2), 393–395 (1982)