Extragradient Algorithms with Linesearches for Solving Nonmonotone Equilibrium Problems in Banach Spaces
Vietnam Journal of Mathematics - Trang 1-21 - 2023
Tóm tắt
In this paper, we introduce a new extragradient algorithm with linesearches for solving equilibrium problems in a real Banach space where the bifunction is not required to satisfy any monotone property. Under assumptions on the continuity, convexity of the bifunction, and the nonemptyness of the solution set of the Minty equilibrium problem, we show that the iterative sequences generated by this algorithm converge strongly to a solution to the primal problem.
Tài liệu tham khảo
Alber, Ya.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartosator, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and Applied Mathematics, vol. 178, pp. 15–50. Dekker, New York (1996)
Alber, Ya.I., Ryazantseva, I.: Nonlinear Ill-Posed Problems of Monotone Type. Springer, Dordrecht (2006)
Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)
Brézis, H., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan’s minimax principle. Boll. Unione Mat. Ital. 6, 293–300 (1972)
Bianchi, M., Schaible, S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90, 31–43 (1996)
Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Nonlinear Programming Techniques for Equilibria. Springer, Cham (2019)
Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)
Burachik, R., Kassay, G.: On a generalized proximal point method for solving equilibrium problems in Banach spaces. Nonlinear Anal. 75, 6456–6464 (2012)
Burachik, R.S., Millán, R.D.: A projection algorithm for non-monotone variational inequalities. Set-Valued Var. Anal. 28, 149–166 (2020)
Castellani, M., Giuli, M.: Refinements of existence results for relaxed quasimonotone equilibrium problems. J. Glob. Optim. 57, 1213–1227 (2013)
Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Mathematics and Its Applications, vol. 62. Kluwer Academic Publishers, Dordrecht (1990)
Contreras, J., Klusch, M., Krawczyk, J.B.: Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets. IEEE Trans. Power Syst. 19, 195–206 (2004)
Ding, X.P.: Auxiliary principle and algorithm for mixed equilibrium problems and bilevel equilibrium problems in Banach spaces. J. Optim. Theory Appl. 146, 347–357 (2010)
Dinh, B.V., Kim, D.S.: Projection algorithms for solving nonmonotone equilibrium problems in Hilbert space. J. Comput. Appl. Math. 302, 106–117 (2016)
Dinh, B.V., Kim, D.S.: Extragradient algorithms for equilibrium problems and symmetric generalized hybrid mappings. Optim. Lett. 11, 537–553 (2017)
Dinh, B.V., Muu, L.D.: A projection algorithm for solving pseudomonotone equilibrium problems and it’s application to a class of bilevel equilibria. Optimization 64, 559–575 (2015)
Dinh, B.V., Hung, P.G., Muu, L.D.: Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems. Numer. Funct. Anal. Optim. 35, 539–563 (2014)
Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2002)
Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities III, pp. 103–113. Academic Press, New York (1972)
Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Non-expansive Mappings. Marcel Dekker, New York (1984)
Hieu, D.V., Strodiot, J.J.: Strong convergence theorems for equilibrium problems and fixed point problems in Banach spaces. J. Fixed Point Theory Appl. 20, 131 (2018)
Hieu, D.V., Muu, L.D., Quy, P.K., Duong, H.N.: New extragradient methods for solving equilibrium problems in Banach spaces. Banach J. Math. Anal. 15, 8 (2021)
Iusem, A.N., Sosa, W.: Iterative algorithms for equilibrium problems. Optimization 52, 301–316 (2003)
Iusem, A.N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math Program. 116, 259–273 (2009)
Iusem, A.N., Mohebbi, V.: Extragradient methods for nonsmooth equilibrium problems in Banach spaces. Optimization 69, 2383–2403 (2020)
Iusem, A.N., Nasri, M.: Korpelevich’s method for variational inequality problems in Banach spaces. J Glob. Optim. 50, 59–76 (2011)
Kassay, G., Rădulescu, V.D.: Equilibrium Problems and Applications. Academic Press (2019)
Konnov, I.V., Dyabilkin, D.A.: Nonmonotone equilibrium problems: coercivity and weak regularization. J. Glob. Optim. 49, 575–587 (2011)
Konnov, I.V., Pinyagina, O.V.: D-gap functions for a class of equilibrium problems in Banach spaces. Comput. Methods Appl. Math. 3, 274–286 (2003)
Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747–756 (1976)
Mastroeni, G.: Gap function for equilibrium problems. J. Glob. Optim. 27, 411–426 (2003)
Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Equilibrium Problems and Variational Models. Nonconvex Optimization and Its Applications, vol. 68, pp. 289–298. Springer, New York (2003)
Moudafi, A.: Proximal point algorithm extended to equilibrium problems. J. Nat. Geom. 15, 91–100 (1999)
Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18, 1159–1166 (1992)
Noor, M.A.: Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl. 122, 371–386 (2004)
Qin, X., Cho, Y.J., Kang, S.M.: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 225, 20–30 (2009)
Quoc, T.D., Anh, P.N., Muu, L.D.: Dual extragradient algorithms extended to equilibrium problems. J. Glob. Optim. 52, 139–159 (2012)
Quoc, T.D., Muu, L.D., Nguyen, V.H.: Extragradient algorithms extended to equilibrium problems. Optimization 57, 749–776 (2008)
Reich, S., Sabach, S.: Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces. In: Reich, S., Zaslavski, A.J. (eds.) Optimization Theory and Related Topics. Contemporary Mathematics, vol. 568, pp. 225–240. American Mathematical Society, Providence, RI (2012)
Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations, 2nd edn. Texts in Applied Mathematics, vol. 13. Springer, New York (2004)
Rouhani, B.D., Mohebbi, V.: Extragradient methods for quasi-equilibrium problems in Banach spaces. J. Aust. Math. Soc. 112, 90–114 (2022)
Saewan, S., Kumam, P.: A modified hybrid projection method for solving generalized mixed equilibrium problems and fixed point problems in Banach spaces. Comput. Math. Appl. 62, 1723–1735 (2011)
Strodiot, J.J., Vuong, P.T., Nguyen, T.T.V.: A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces. J. Glob. Optim. 64, 159–178 (2016)
Strodiot, J.J., Nguyen, T.T.V., Nguyen, V.H.: A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems. J. Glob. Optim. 56, 373–397 (2013)
Takahashi, W.: Nonlinear Functional Analysis: Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)
Takahashi, W., Zembayashi, K.: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 45–57 (2009)
Tiel, J.V.: Convex Analysis: An Introductory Text. Wiley, New York (1984)
Ye, M., He, Y.: A double projection method for solving variational inequalities without monotonicity. Comput. Optim. Appl. 60, 141–150 (2015)
Zeidler, E.: Nonlinear Functional Analysis and its Applications II/A: Linear Monotone Operators. Springer, Berlin (1990)