Extraction process of metals and removal of impurities from sulfide ores with aluminum permanganate [Al(MnO4)3] oxidizer: Experimental design and industrial modeling

Journal of Central South University - Tập 30 - Trang 2149-2165 - 2023
Alizadeh Taher1, Kadkhodayan Hossein1
1Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, Tehran, Iran

Tóm tắt

Nowadays, sulfide ores are a huge source of precious metals. One of the main problems for working with sulfide ores is their low solubility in acids (Ksp<10−20) and the production of toxic and harmful by-products. In the present study, the use of aluminum permanganate [Al(MnO4)3] oxidizer for sulfide ore dissolution and metal extraction has partially solved this problem. Taguchi experimental design based on Aspen Hysys modeling assembled has been applied to dissolution study of sulfide ores with Al(MnO4)3 oxidizer as a novel plan from experimental to industrial scale. The optimum results have been utilized as the primary data for the simulation and sensitivity analysis of the process by Aspen Hysys software. The effects of operating parameters including pH, retention temperature, agitation rate, retention time, amount of Al(MnO4)3 consumed, leaching density, grain size and oxygen pressure have been investigated on the extraction efficiency of metals from sulfide ores. Under optimized conditions, Zn, Cu, and Pb metal extraction efficiency was obtained above 77%, 73%, and 70%, respectively.

Tài liệu tham khảo

PAN Wei, JIN Hui-min, LIU Zheng-zhou, et al. Experimental and theoretical study on strengthening leaching of sulfide ores by surfactants [J]. Process Safety and Environmental Protection, 2020, 137: 289–299. DOI: https://doi.org/10.1016/j.psep.2020.02.037. HERNÁNDEZ P C, DUPONT J, HERREROS O O, et al. Accelerating copper leaching from sulfide ores in acid-nitrate-chloride media using agglomeration and curing as pretreatment [J]. Minerals, 2019, 9(4): 250. DOI: https://doi.org/10.3390/min9040250. LEE J, ACAR S, DOERR D L, et al. Comparative bioleaching and mineralogy of composited sulfide ores containing enargite, covellite and chalcocite by mesophilic and thermophilic microorganisms [J]. Hydrometallurgy, 2011, 105(3–4): 213–221. DOI: https://doi.org/10.1016/j.hydromet.2010.10.001. ZHANG Xiao-long, HAN Yue-xin, KAWATRA S K. Effects of grinding media on grinding products and flotation performance of sulfide ores [J]. Mineral Processing and Extractive Metallurgy Review, 2021, 42(3): 172–183. DOI: https://doi.org/10.1080/08827508.2019.1692831. MASLOBOEV V, SELEZNEV S, SVETLOV A, et al. Hydrometallurgical processing of low-grade sulfide ore and mine waste in the Arctic regions: Perspectives and challenges [J]. Minerals, 2018, 8(10): 436. DOI: https://doi.org/10.3390/min8100436. BAE M, KIM S, SOHN J, et al. Leaching behavior of gold and silver from concentrated sulfide ore using ammonium thiosulfate [J]. Metals, 2020, 10(8): 1029. DOI: https://doi.org/10.3390/met10081029. BARROS K S, VIELMO V S, MORENO B G, et al. Chemical composition data of the main stages of copper production from sulfide minerals in Chile: A review to assist circular economy studies [J]. Minerals, 2022, 12(2): 250. DOI: https://doi.org/10.3390/min12020250. MU Wen-ning, CUI Fu-hui, HUANG Zhi-peng, et al. Synchronous extraction of nickel and copper from a mixed oxide-sulfide nickel ore in a low-temperature roasting system [J]. Journal of Cleaner Production, 2018, 177: 371–377. DOI: https://doi.org/10.1016/j.jclepro.2017.12.260. CUI Fu-hui, MU Wen-ning, WANG Shuai, et al. Sodium sulfate activation mechanism on co-sulfating roasting to nickel-copper sulfide concentrate in metal extractions, microtopography and kinetics [J]. Minerals Engineering, 2018, 123: 104–116. DOI: https://doi.org/10.1016/j.mineng.2018.04.013. ZHAO Yu, ZHAO Hong-bo, ABASHINA T, et al. Review on arsenic removal from sulfide minerals: An emphasis on enargite and arsenopyrite [J]. Minerals Engineering, 2021, 172: 107133. DOI: https://doi.org/10.1016/j.mineng.2021.107133. GU Yan, ZHANG Ting-an, LIU Yan, et al. Pressure acid leaching of zinc sulfide concentrate [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(S1): s136–s140. DOI: https://doi.org/10.1016/S1003-6326(10)60028-3. MUSZER A, WÓDKA J, CHMIELEWSKI T, et al. Covellinisation of copper sulphide minerals under pressure leaching conditions [J]. Hydrometallurgy, 2013, 137: 1–7. DOI: https://doi.org/10.1016/j.hydromet.2013.03.010. ZHANG Yi-sheng, ZHAO Hong-bo, QIAN Lu, et al. A brief overview on the dissolution mechanisms of sulfide minerals in acidic sulfate environments at low temperatures: Emphasis on electrochemical cyclic voltammetry analysis [J]. Minerals Engineering, 2020, 158: 106586. DOI: https://doi.org/10.1016/j.mineng.2020.106586. LI Xiao-hua, MONNENS W, LI Zheng, et al. Solvometallurgical process for extraction of copper from chalcopyrite and other sulfidic ore minerals [J]. Green Chemistry, 2020, 22(2): 417–426. DOI: https://doi.org/10.1039/c9gc02983d. PASHKEVICH M, ALEKSEENKO A, NUREEV R. Environmental damage from the storage of sulfide ore tailings [J]. Journal of Mining Institute, 2023, 260: 155–167. DOI: https://doi.org/10.31897/pmi.2023.32. KUZ’MIN V I, KUZ’MIN D V. Sorption of nickel and copper from leach pulps of low-grade sulfide ores using Purolite S930 chelating resin [J]. Hydrometallurgy, 2014, 141: 76–81. DOI: https://doi.org/10.1016/j.hydromet.2013.10.007. CERDA C, TABOADA M, JAMETT N, et al. Effect of pretreatment on leaching primary copper sulfide in acid-chloride media [J]. Minerals, 2017, 8(1): 1. DOI: https://doi.org/10.3390/min8010001. NIKOLOSKI A N, O’MALLEY G P, BAGAS S J. The effect of silver on the acidic ferric sulfate leaching of primary copper sulfides under recycle solution conditions observed in heap leaching. Part 1: Kinetics and reaction mechanisms [J]. Hydrometallurgy, 2017, 173: 258–270. DOI: https://doi.org/10.1016/j.hydromet.2017.08.020. WATLING H R. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review [J]. Hydrometallurgy, 2006, 84(1–2): 81–108. DOI: https://doi.org/10.1016/j.hydromet.2006.05.001. DEVECI H, AKCI A, ALP I. Parameters for control and optimization of bioleaching of sulfide minerals [C]//Material Science & Techology 2003 Meeting. Pittsburgh, PA, USA: TMS, 2003: 77–90. DAS T, AYYAPPAN S, CHAUDHURY G R. Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms [J]. BioMetals, 1999, 12(1): 1–10. DOI: https://doi.org/10.1023/A:1009228210654. ABKHOSHK E, JORJANI E, AL-HARAHSHEH M S, et al. Review of the hydrometallurgical processing of non-sulfide zinc ores [J]. Hydrometallurgy, 2014, 149: 153–167. DOI: https://doi.org/10.1016/j.hydromet.2014.08.001. BALÁŽ P, ALÁČOVÁ A, ACHIMOVIČOVÁ M, et al. Mechanochemistry in hydrometallurgy of sulphide minerals [J]. Hydrometallurgy, 2005, 77(1–2): 9–17. DOI: https://doi.org/10.1016/j.hydromet.2004.09.009. GODIRILWE L L, MAGWANENG R S, SAGAMI R, et al. Extraction of copper from complex carbonaceous sulfide ore by direct high-pressure leaching [J]. Minerals Engineering, 2021, 173: 107181. DOI: https://doi.org/10.1016/j.mineng.2021.107181. SAIDI M, KADKHODAYAN H. Toxic heavy metal removal from sulfide ores using potassium permanganate: Process development and waste management [J]. Journal of Environmental Management, 2020, 276: 111354. DOI: https://doi.org/10.1016/j.jenvman.2020.111354. GHASSA S, BORUOMAND Z, MORADIAN M, et al. Microbial dissolution of Zn-Pb sulfide minerals using mesophilic iron and sulfur-oxidizing acidophiles [J]. Mineral Processing and Extractive Metallurgy Review, 2015, 36(2): 112–122. DOI: https://doi.org/10.1080/08827508.2014.898302. SAIDI M, KADKHODAYAN H. Process development for sodium permanganate production by waste management of industrial sludge of zinc oxide ores recovery plants: Experimental and simulation study [J]. Process Safety and Environmental Protection, 2021, 148: 1254–1263. DOI: https://doi.org/10.1016/j.psep.2021.02.038. JU Jin-rong, FENG Ya-li, LI Hao-ran, et al. Extraction of valuable metals from minerals and industrial solid wastes via the ammonium sulfate roasting process: A systematic review [J]. Chemical Engineering Journal, 2023, 457: 141197. DOI: https://doi.org/10.1016/j.cej.2022.141197. MONDAL S, PAUL B, KUMAR V, et al. Parametric optimization for leaching of cobalt from Sukinda ore of lateritic origin—A Taguchi approach [J]. Separation and Purification Technology, 2015, 156: 827–834. DOI: https://doi.org/10.1016/j.seppur.2015.11.007. SAIDI M, KADKHODAYAN H. Experimental and theoretical evaluation of zinc recovery from zinc oxide ore: Process optimization and simulation using Aspen Plus software [J]. International Journal of Chemical Reactor Engineering, 2020, 18(10–11): 20190187. DOI: https://doi.org/10.1515/ijcre-2019-0187. SAIDI M, KADKHODAYAN H. Experimental and simulation assessment to mitigate the emission of sulfide toxic gases and removing main impurities from Zn+Pb+Cu recovery plants [J]. Chemical Product and Process Modeling, 2023, 18(2): 195–214. DOI: https://doi.org/10.1515/cppm-2021-0062. MONEIM N A E, ISMAIL I. Simulation of ammonia production using HYSYS software [J]. Chemical and Process Engineering Research, 2020, 62: 2224–7467. DOI: https://doi.org/10.7176/CPER/62-03. SOUSA A M, MATOS H A, PEREIRA M J. Modelling paraffin wax deposition using aspen HYSYS and MATLAB [M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2019: 973–978. DOI: https://doi.org/10.1016/b978-0-12-818634-3.50163-6. GERVASI J, DUBOIS L, THOMAS D. Simulation of the post-combustion CO2 capture with Aspen Hysys™ software: Study of different configurations of an absorptionregeneration process for the application to cement flue gases [J]. Energy Procedia, 2014, 63: 1018–1028. DOI: https://doi.org/10.1016/j.egypro.2014.11.109. SAIDI M, KADKHODAYAN H. Experimental and simulation study of copper recovery process from copper oxide ore using aspen plus software: Optimization and sensitivity analysis of effective parameters [J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103772. DOI: https://doi.org/10.1016/j.jece.2020.103772. AMOUEI T M, MAGAZOVA G, MAGAZOVA A, et al. Simulation of environmental impact of an existing natural gas dehydration plant using a combination of thermodynamic models [J]. Process Safety and Environmental Protection, 2016, 104: 38–47. DOI: https://doi.org/10.1016/j.psep.2016.08.008. ESMAILI H, KOWSARI E, RAMAKRISHNA S. Significance of nanostructure morphologies in photoelectrochemical water splitting cells: A brief review [J]. Journal of Molecular Structure, 2021, 1230: 129856. DOI: https://doi.org/10.1016/j.molstruc.2020.129856. MBUYA B I, KIME M B, TSHIMOMBO A M D. Comparative study of approaches based on the taguchi and ANOVA for optimising the leaching of copper–cobalt flotation tailings [J]. Chemical Engineering Communications, 2017, 204(4): 512–521. DOI: https://doi.org/10.1080/00986445.2017.1278588. COPUR M, KIZILCA M, KOCAKERIM M M. Determination of the optimum conditions for copper leaching from chalcopyrite concentrate ore using taguchi method [J]. Chemical Engineering Communications, 2015, 202(7): 927–935. DOI: https://doi.org/10.1080/00986445.2014.891506. JASSIM H M, TOMA H Z A, OUDAH L S. Solvent extraction and electro-wining from copper leaching product of mawat sulfide ore using taguchi method [J]. UKH Journal of Science and Engineering, 2017, 1(1): 53–59. DOI: https://doi.org/10.25079/ukhjse.v1n1y2017.pp53-59. MEHRABI N, SOLEIMANI M, YEGANEH M M, et al. Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles [J]. RSC Advances, 2015, 5(64): 51470–51482. DOI: https://doi.org/10.1039/c5ra03920g. EDWIN M, ABDULSALAM S, MUHAMMAD I M. Process simulation and optimization of crude oil stabilization scheme using aspen-HYSYS software [J]. International Journal of Recent Trends in Engineering & Research (IJRTER), 2020, 3(5): 2455–1457. DOI: https://doi.org/10.23883/IJRTER.2017.3230.MIIUW. HAYDARY J. Chemical process design and simulation: Aspen Plus and Aspen Hysys applications [M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. DOI: https://doi.org/10.1002/9781119311478. SMEJKAL Q, ŠOÓŠ M. Comparison of computer simulation of reactive distillation using Aspen Plus [J]. Chemical Engineering and Processing: Process Intensification, 2002, 41 (5): 413–418. DOI: https://doi.org/10.1016/S0255-2701(01)00160-X.