Extraction of rubidium and cesium from brine solutions using a room temperature ionic liquid system containing 18-crown-6

Polish Journal of Chemical Technology - Tập 20 Số 2 - Trang 40-46 - 2018
Deqian Huang1,2,3, Hong Zheng4, Zeyu Liu1,2,3, Amin Bao1,2,3, Bo Li1,2
1Chinese Academy of Sciences , Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources , Qinghai Institute of Salt Lakes , 810008 Xining , China
2Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, 810008 Xining, China
3University of Chinese Academy of Sciences, 100049 Beijing, China
4Department of Chemistry , Chongqing Normal University , Chongqing , 400047 , China

Tóm tắt

Abstract

Application of 1-butyl-3-metyhlimidazaolium hexafluorophosphate ([C4mim][PF6]), in the extraction of rubidium and cesium from brine solutions using 1,4,7,10,13,16-hexaoxacyclooctadecane (18C6) as extractant was investigated. Parameters that affect the extraction including pH of aqueous phase, equilibration time, dosage of the ionic liquid, phase ratio, concentration of 18C6 were studied. Under the optimal conditions, the single extraction efficiency of rubidium ions and cesium ions were up 84.11% and 94.99%, respectively. The stripping of alkali metal ions from the loaded organic phase with different stripping agents and concentrations were also investigated. The initial value of the K/Cs and K/Rb ratios were 93.0 and 104.3, respectively, which have dropped 91.21% and 88.01%, respectively, after the extraction and stripping experiments. It was taken a big step in the separation and enrichment of cesium (rubidium) ion and potassium ion. The extraction mechanism was revealed most likely to be a cation exchange mode in this system.

Từ khóa


Tài liệu tham khảo

1. Arnold, W.D., Crouse, D.J., & Brown, K.B. (1965). Solvent extraction of cesium (and rubidium) from ore liquors with substituted phenols. Industrial & Engineering Chemistry Process Design and Development 4(3), 249–254. DOI: 10.1021/i260015a002.10.1021/i260015a002

2. McDowell, W.J., Case, G.N., McDonough, J.A., & Bartsch, R.A. (1992). Selective extraction of cesium from acidic nitrate solutions with didodecylnaphthalenesulfonic acid synergized with bis (tert-butylbenzo)-21-crown-7. Anal. Chem. 64(23), 3013–3017. DOI: 10.1021/ac00047a024.10.1021/ac00047a024

3. Tsai, S.C., Wang, T.H., Li, M.H., Wei, Y.Y., & Teng, S.P. (2009). Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard. Mater. 161(2), 854–861. DOI:10.1016/j.jhazmat.2008.04.044.10.1016/j.jhazmat.2008.04.044

4. Li, Z., Pranolo, Y., Zhu, Z., & Cheng, C.Y. (2017). Solvent extraction of cesium and rubidium from brine solutions using 4-tert-butyl-2-(α-methylbenzyl)-phenol. Hydrometallurgy 171, 1–7. DOI: 10.1016/j.hydromet.2017.03.007.10.1016/j.hydromet.2017.03.007

5. Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z., & Yang, Y. (2013). Adsorption of cesium from aqueous solution using agricultural residue–Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies. Water Res. 47(7), 2563–2571. DOI: 10.1016/j.watres.2013.02.014.10.1016/j.watres.2013.02.014

6. Wang, J., Che, D., & Qin, W. (2015). Extraction of rubidium by t-BAMBP in cyclohexane. Chinese J. Chem. Eng. 23(7), 1110–1113. DOI: 10.1016/j.cjche.2015.04.005.10.1016/j.cjche.2015.04.005

7. Yang, W.J., Liu, S. M., Li, Y.J., Huang, Y.J., & Luo, X.S. (2013). Process analysis of Rb+ and Cs+ adsorption from salt lake brine by ammonium molybdophosphate composite material. In Advanced Materials Research (Vol. 785, pp. 812–816). Trans Tech Publications. DOI: 10.4028/www.scientific.net/AMR.785-786.812.10.4028/www.scientific.net/AMR.785-786.812

8. Liu, S.M., Liu, H.H., Huang, Y.J., & Yang, W.J. (2015). Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP–kerosene solution. T. Nonferr. Metal. Soc. 25(1), 329–334. DOI: 10.1016/S1003-6326(15)63608-1.10.1016/S1003-6326(15)63608-1

9. Ali, S.M., Joshi, J.M., Deb, A.S., Boda, A., Shenoy, K.T., & Ghosh, S.K. (2014). Dual mode of extraction for Cs+ and Na+ ions with dicyclohexano-18-crown-6 and bis (2-propyloxy) calix [4] crown-6 in ionic liquids: density functional theoretical investigation. RSC Adv. 4(44), 22911–22925. DOI: 10.1039/C4RA02246G.10.1039/402246

10. Jianchen, W., Xiaowen, Z., & Chongli, S. (2005). Extracting Performance of Cesium by 25, 27-Bis (2-Propyloxy) Calix [4]-26, 28-Crown-6 (iPr-C[4]C-6) in n-octanol. Sep. Sci. Technol. 40(16), 3381-3392. DOI: 10.1080/0149639050042373010.1080/01496390500423730

11. Visser, A.E., & Rogers, R.D. (2003). Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. J. Solid State Chem. 171(1), 109–113. DOI: 10.1016/S0022-4596(02)00193-7.10.1016/S0022-4596(02)00193-7

12. Shi, C., Jia, Y., Zhang, C., Liu, H., & Jing, Y. (2015). Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate. Fusion Eng. Des. 90, 1–6. DOI: 10.1016/j.fusengdes.2014.09.021.10.1016/j.fusengdes.2014.09.021

13. Rogers, R.D. (2007). Materials science: reflections on ionic liquids. Nature 447(7147), 917–918. DOI: 10.1038/447917a.10.1038/447917a17581570

14. Rout, A., Venkatesan, K.A., Srinivasan, T.G., & Rao, P.V. (2011). Extraction and third phase formation behavior of Eu(III) IN CMPO-TBP extractants present in room temperature ionic liquid. Sep. Purif. Technol. 76(3), 238–243. DOI: 10.1016/j.seppur.2010.10.009.10.1016/j.seppur.2010.10.009

15. Han, J., Wang, Y., Chen, C., Kang, W., Liu, Y., Xu, K., & Ni, L. (2014). (Liquid+ liquid) equilibria and extraction capacity of (imidazolium ionic liquids+ potassium tartrate) aqueous two-phase systems. J. Mol. Liq. 193, 23–28. DOI: 10.1016/j.molliq.2013.12.022.10.1016/j.molliq.2013.12.022

16. Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99(8), 2071–2084. DOI: 10.1021/cr980032t.10.1021/cr980032t11849019

17. Pandey, S. (2006). Analytical applications of room-temperature ionic liquids: A review of recent efforts. Anal. Chim. Acta 556(1), 38–45. DOI: 10.1016/j.aca.2005.06.038.10.1016/j.aca.2005.06.03817723329

18. Shi, C., Duan, D., Jia, Y., & Jing, Y. (2014). A highly efficient solvent system containing ionic liquid in tributyl phosphate for lithium ion extraction. J. Mol. Liq. 200, 191–195. DOI: 10.1016/j.molliq.2014.10.004.10.1016/j.molliq.2014.10.004

19. Shang-Qing, C.H.E.N., Meng-Xue, W.A. N.G., Long, L.I., Ya-Fei, G.U.O., Xiao-Ping, Y.U., & Tian-Long, D.E.N.G. (2017). Recovery of Rubidium and Cesium from Brines by Solvent Extraction. DEStech Transactions on Materials Science and Engineering, DOI: 10.12783/dtmse/icmsea/mce2017/10798.10.12783/dtmse/icmsea/mce2017/10798

20. Luo, H., Dai, S., Bonnesen, P.V., Buchanan, A.C., Holbrey, J.D., Bridges, N.J., & Rogers, R.D. (2004). Extraction of cesium ions from aqueous solutions using calix [4] arene-bis (tert-octylbenzo-crown-6) in ionic liquids. Anal. Chem. 76(11), 3078–3083. DOI: 10.1021/ac049949k.10.1021/ac049949k15167785

21. Dai, S., Ju, Y.H., & Barnes, C.E. (1999). Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J. Chem. Soc., Dalton Trans. (8), 1201-1202. DOI: 10.1039/A809672D.21/10.1039/a809672d

22. Visser, A.E., et al. (2003). Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation. Inorg. Chem. 42(7), 2197–2199. DOI: 10.1021/ic026302e.10.1021/ic026302e12665350

22. Visser, A.E., Jensen, M.P., Laszak, I., Nash, K.L., Choppin, G.R., & Rogers, R.D. (2003). Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation. Inorg. Chem. 42(7), 2197–2199. DOI: 10.1021/ic026302e.10.1021/ic026302e

23. Zhang, N., Gao, D.L., Liu, M.M., & Deng, T.L. (2014). Rubidium and Cesium Recovery from Brine Resources. In Adv. Mater. Res. (Vol. 1015, pp. 417–420). Trans Tech Publications.10.4028/www.scientific.net/AMR.1015.417

24. Horwitz, E.P., Dietz, M.L., & Fisher, D.E. (1990). Extraction of strontium from nitric acid solutions using dicyclohexano-18-crown-5 and its derivatives. Solvent Extr. Ion Exc. 8(4–5), 557–572. DOI: 10.1080/07366299008918017.10.1080/07366299008918017