Chiết xuất Các Thủy Vực Đô Thị Từ Hình Ảnh Viễn Thám Độ Phân Giải Cao Sử Dụng Học Sâu
Tóm tắt
Thông tin chính xác về nước mặt đô thị là rất quan trọng để đánh giá vai trò của nó trong các dịch vụ hệ sinh thái đô thị trong bối cảnh tồn tại của con người và biến đổi khí hậu. Việc chiết xuất chính xác các thủy vực đô thị từ hình ảnh là có ý nghĩa lớn đối với quy hoạch đô thị và phát triển kinh tế - xã hội. Trong bài báo này, một kiến trúc học sâu mới được đề xuất cho việc chiết xuất các thủy vực đô thị từ hình ảnh viễn thám độ phân giải cao. Đầu tiên, một thuật toán phân cụm tuyến tính lặp đơn giản thích ứng được áp dụng để phân đoạn hình ảnh viễn thám thành các siêu điểm ảnh chất lượng cao. Sau đó, một kiến trúc mạng nơ-ron tích chập (CNN) mới được thiết kế để có thể chiết xuất các đặc trưng cấp cao hữu ích của các thủy vực từ dữ liệu đầu vào trong một bối cảnh đô thị phức tạp và đánh dấu siêu điểm ảnh là một trong hai loại: điểm ảnh có nước hoặc không có nước. Cuối cùng, một hình ảnh độ phân giải cao của các siêu điểm ảnh đã được chiết xuất nước được tạo ra. Kết quả thí nghiệm cho thấy phương pháp được đề xuất đạt được độ chính xác cao hơn trong việc chiết xuất nước từ các hình ảnh viễn thám độ phân giải cao so với các phương pháp truyền thống, và độ chính xác tổng thể trung bình đạt 99,14%.
Từ khóa
#viễn thám #chiết xuất nước #học sâu #mạng nơ-ron tích chập #phân đoạn hình ảnhTài liệu tham khảo
Fletcher, 2013, Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art, Adv. Water Res., 51, 261, 10.1016/j.advwatres.2012.09.001
Rizzo, 2010, Water and Wastewater Pipe Nondestructive Evaluation and Health Monitoring: A Review, Adv. Civ. Eng., 2010, 818597
Byun, 2015, Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images, Remote Sens., 7, 10347, 10.3390/rs70810347
Yang, X., Zhao, S., Qin, X., Zhao, N., and Liang, L. (2017). Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens., 9.
Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., and Li, X. (2016). Water bodies’ mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens., 8.
Zhou, 2014, Multiscale water body extraction in urban environments from satellite images, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 4301, 10.1109/JSTARS.2014.2360436
Zeng, 2015, A natural-rule-based-connection (NRBC) method for river network extraction from high-resolution imagery, Remote Sens., 7, 14055, 10.3390/rs71014055
Zhang, 2007, Detailed mapping of a salt farm from Landsat TM imagery using neural network and maxi-mum likelihood classifiers: A comparison, Int. J. Remote Sens., 28, 2077, 10.1080/01431160500406870
Yan, Y., Zhao, H., Chen, C., Zou, L., Liu, X., Chai, C., Wang, C., Shi, J., and Chen, S. (2018). Comparison of Multiple Bioactive Constituents in Different Parts of Eucommia ulmoides Based on UFLC-QTRAP-MS/MS Combined with PCA. Molecules, 23.
Li, 2015, Super-Resolution Mapping of Wetland Inundation from Remote Sensing Imagery Based on Integration of Back-Propagation Neural Network and Genetic Algorithm, Remote Sens. Environ., 164, 142, 10.1016/j.rse.2015.04.009
McFeeters, 1996, The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, Int. J. Remote Sens., 17, 1425, 10.1080/01431169608948714
Huang, 2015, An evaluation of Suomi NPP-VIIRS data for surface water detection, Remote Sens. Lett., 6, 155, 10.1080/2150704X.2015.1017664
Xu, 2006, Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Int. J. Remote Sens., 27, 3025, 10.1080/01431160600589179
Feyisa, 2013, Automated Water Extraction Index: A new technique forsurface water mapping using Landsat imagery, Remote Sens. Environ., 140, 23, 10.1016/j.rse.2013.08.029
Katz, D. (2016). Undermining demand management with supply management: Moral hazard in Israeli water policies. Water, 8.
Kang, L., Zhang, S., Ding, Y., and He, X. (2016). Extraction and preference ordering of multireservoir water supply rules in dry years. Water, 8.
Niroumand-Jadidi, M., and Vitti, A. (2017). Reconstruction of river boundaries at sub-pixel resolution: Estimation and spatial allocation of water fractions. ISPRS Int. J. Geo-Inf., 6.
Vieira, 2017, Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications, Neurosci. Biobehav. Rev., 74, 58, 10.1016/j.neubiorev.2017.01.002
Singh, P., Verma, A., and Chaudhari, N.S. (2016). Deep Convolutional Neural Network Classifier for Handwritten Devanagari Character Recognition. Information Systems Design and Intelligent Applications, Springer.
Zhou, 2017, Review of Convolutional Neural Network, Chin. J. Comput., 40, 1229
Hu, 2015, Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery, Remote Sens., 7, 14680, 10.3390/rs71114680
Chen, J., Wang, C., Ma, Z., Chen, J., He, D., and Ackland, S. (2018). Remote Sensing Scene Classification Based on Convolutional Neural Networks Pre-Trained Using Attention-Guided Sparse Filters. Remote Sens., 10.
Krizhevsky, A., Sutskever, I., and Hinton, G. (2012, January 3–6). ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA.
Vedeldi, A., and Lenc, K. (2015, January 26–30). MatConvNet: Convolutional neural networks for MATLAB. Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia.
Yang, 2015, Deep learning for extracting water body from Landsat imagery, Int. J. Innov. Comput. Inf. Control, 11, 1913
Yang, J., and Yang, G. (2018). Modified Convolutional Neural Network Based on Dropout and the Stochastic Gradient Descent Optimizer. Algorithms, 11.
Pouliot, D., Latifovic, R., Pasher, J., and Duffe, J. (2018). Landsat Super-Resolution Enhancement Using Convolution Neural Networks and Sentinel-2 for Training. Remote Sens., 10.
Csillik, O. (2017). Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels. Remote Sens., 9.
Li, Z., and Chen, J. (2015, January 7–12). Superpixel segmentation using linear spectral clustering. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA.
Achanta, 2012, Slic superpixels compared to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal. Mach. Intell., 34, 2274, 10.1109/TPAMI.2012.120
Izadi, 2014, Real-time non-rigid reconstruction using an RGB-D camera, ACM Trans. Graph., 33, 156
Li, H., Liu, J., Liu, R.W., Xiong, N., Wu, K., and Kim, T.-H. (2017). A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis. Sensors, 17.
Guangyun, 2015, Superpixel-based graphical model for remote sensing image mapping, IEEE Trans. Geosci. Remote Sens., 53, 5861, 10.1109/TGRS.2015.2423688
Isikdogan, 2017, Surface water mapping by deep learning, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sensi., 10, 4909, 10.1109/JSTARS.2017.2735443