Extraction of Reliable Primitives from Unorganized Point Clouds

3D Research - Tập 6 Số 4 - 2015
Trung-Thien Tran1, Van-Toan Cao1, Denis Laurendeau1
1CVSL Laboratory, Laval University, Quebec, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Musialski, P., Wonka, P., Aliaga, D. G., Wimmer, M., Gool, L., & Purgathofer, W. (2013). A survey of Urban reconstruction. In F. S. Nooruddin (Ed.), Computer graphics forum (Vol. 32, pp. 146–177). Hoboken: Wiley Online Library.

Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P., Levine, J.-A., Sharf, A., et al. (2014). State of the art in surface reconstruction from point clouds. In S. Lefebvre & M. Spagnuolo (Eds.), Eurographics 2014—state of the art reports. Aire-la-Ville: The Eurographics Association.

Schnabel, R., Wahl, R., & Klein, R. (2007). Efficient RANSAC for point-cloud shape detection. Computer Graphics Forum, 26(2), 214–226.

Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D., & Mitra, N. J. (2011). Globfit: Consistently fitting primitives by discovering global relations. ACM Transactions on Graphics, 30, 52:1–52:12.

Borrmann, D., Elseberg, J., Lingemann, K., & Nüchter, A. (2011). “The 3D Hough transform for plane detection in point clouds: A review and a new accumulator design,” 3D. Research, 2(2), 1–13.

Rabbani, T., & van den Heuvel, F. (2005). Efficient Hough transform for automatic detection of cylinders in point clouds. In ISPRS WG III/3, III/4 (vol. 3, pp. 60–65).

Cohen-Steiner, D., Alliez, P., & Desbrun, M. (2004). Variational shape approximation. ACM Transactions on Graphics, 23(3), 905–914.

Vieira, M., & Shimada, K. (2005). Surface mesh segmentation and smooth surface extraction through region growing. Computer Aided Geometric Design, 22(8), 771–792.

Lafarge, F., & Mallet, C. (2012). Creating large-scale city models from 3D-point clouds: A robust approach with hybrid representation. International Journal of Computer Vision, 99(1), 69–85.

Rabbani, T., Dijkman, S., van den Heuvel, F., & Vosselman, G. (2007). An integrated approach for modelling and global registration of point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 61(6), 355–370.

Bolles, R. C., & Fischler, M. A. (1981). A RANSAC-based approach to model fitting and its application to finding cylinders in range data. In Proceedings of the Seventh International Joint Conference on Artificial Intelligence—volume 2, IJCAI’81, (pp. 637–643). San Francisco, CA: Morgan Kaufmann Publishers Inc.

Lavva, I., Hameiri, E., & Shimshoni, I. (2008). Robust methods for geometric primitive recovery and estimation from range images. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(3), 826–845.

Liu, J., & Wu, Z. (2014). An adaptive approach for primitive shape extraction from point clouds. Optik: International Journal for Light and Electron Optics, 125, 2000–2008.

Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15, 11–15.

Holz, D., & Behnke, S. (2013). Fast range image segmentation and smoothing using approximate surface reconstruction and region growing. Intelligent Autonomous Systems, 12, 61–73.

Camurri, M., Vezzani, R., & Cucchiara, R. (2014). 3D Hough transform for sphere recognition on point clouds. Machine Vision and Applications, 25(7), 1877–1891.

Tran, T.-T., Cao, V.-T., & Laurendeau, D. (2015). Extraction of cylinders and estimation of their parameters from point clouds. Computers & Graphics, 46, 345–357.

Tran, T.-T., Cao, V.-T., & Laurendeau, D. (2015). esphere: Extracting spheres from unorganized point clouds. The Visual Computer, 2015, 1–18.

Tran, T., Cao, V., Nguyen, V., Ali, S., & Laurendeau, D. (2014) Automatic method for sharp feature extraction from 3D data of man-made objects. In GRAPP 2014—Proceedings of the Ninth International Conference on Computer Graphics Theory and Applications, (pp. 112–119), Lisbon, 5–8 January, 2014.

Lai, H.-C., Chang, Y.-H., & Lai, J.-Y. (2009). Development of feature segmentation algorithms for quadratic surfaces. Advances in Engineering Software, 40(10), 1011–1022.

Wang, J., Gu, D., Yu, Z., Tan, C., & Zhou, L. (2012). A framework for 3D model reconstruction in reverse engineering. Computers & Industrial Engineering, 63(4), 1189–1200.

Attene, M., Falcidieno, B., & Spagnuolo, M. (2006). Hierarchical mesh segmentation based on fitting primitives. The Visual Computer, 22(3), 181–193.

Attene, M., & Patanè, G. (2010). Hierarchical structure recovery of point-sampled surfaces. Computer Graphics Forum, 29(6), 1905–1920.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992). Surface reconstruction from unorganized points. In Proceedings of the Nineteenth annual conference on Computer graphics and interactive techniques, (pp. 71–78), New York.

Garland, M., & Heckbert, P.-S. (1998). Simplifying surfaces with color and texture using quadric error metrics. In Proceedings of the Conference on Visualization '98, (pp. 263–269). Los Alamitos, CA: IEEE Computer Society Press.

Pratt, V. (1987). Direct least-squares fitting of algebraic surfaces. In SIGGRAPH ’87, Proceedings of the Fourteenth Annual Conference on Computer Graphics and Interactive Techniques, (pp. 145–152). New York, NY: ACM.

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.

Tran, T.-T., Ali, S., & Laurendeau, D. (2013). Automatic sharp feature extraction from point clouds with optimal neighbor size. In MVA ’13, Proceedings of the Thirteenth IAPR International Conference on Machine Vision Applications, Kyoto.