Extracellular Vesicles as Drug Delivery Vehicles to the Central Nervous System
Tóm tắt
Effective drug delivery to the CNS to achieve the desired therapeutic response is a significant challenge in the field of drug delivery. In central nervous system (CNS), blood brain barrier (BBB) restricts the desired therapeutic responses due to inefficient targeting, release kinetics, and failure to reach therapeutic concentrations in the brain. Therefore, most potentially beneficial diagnostic and therapeutic agents are not able to reach to the brain upon systemic administration. Despite the existence of many invasive techniques to promote drug deliveries across BBB, novel strategies of drug delivery system which can cross BBB effectively are required, otherwise translation of novel neurotherapeutics from bench to bedside will be difficult to achieve. In this review, we briefly outline the existing and emerging strategies for CNS drug deliveries with a focus on potential and challenges of using extracellular vesicles (EVs) in CNS drug delivery system. EVs are emerging as a promising tool for therapeutic delivery owing to its favorable intrinsic features of biocompatibility, stability, stealth capacity, ability to overcome natural barriers and inherent homing capability. EVs are nanovesicles that allow cell-cell communication. The EVs-cargo reflects the physiological as well as the pathophysiological state of a cell. EVs are shown to play a role in human immunodeficiency virus (HIV) infection and dissemination, which contributes to acquired immune deficiency syndrome (AIDS). In the context of HIV-1 infection, this review also outlines the role of EVs in dissemination, challenges faced in EVs research in HIV-1 co-morbid conditions and potential of nanotechnologies, especially EVs in Neuro-AIDS.
Tài liệu tham khảo
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030
Abels ER, Breakefield XO (2016) Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 36(3):301–312. https://doi.org/10.1007/s10571-016-0366-z
Ahn S, Seo E, Kim K, Lee SJ (2013) Controlled cellular uptake and drug efficacy of nanotherapeutics. Sci Rep 3:1997. https://doi.org/10.1038/srep01997
Almutairi MM, Gong C, Xu YG, Chang Y, Shi H (2016) Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci 73(1):57–77. https://doi.org/10.1007/s00018-015-2050-8
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345. https://doi.org/10.1038/nbt.1807
Antimisiaris SG, Mourtas S, Marazioti A (2018) Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 10(4):218. https://doi.org/10.3390/pharmaceutics10040218
Antonyak MA, Cerione RA (2015) Emerging picture of the distinct traits and functions of microvesicles and exosomes. Proc Natl Acad Sci U S A 112(12):3589–3590. https://doi.org/10.1073/pnas.1502590112
Arvanitis CD, McDannold N (2015) Chapter 18 - drug delivery to the brain via focused ultrasound. In: Golby AJ (ed) Image-Guided Neurosurgery. Academic Press, Boston, pp 441–474
Atluri VS, Hidalgo M, Samikkannu T, Kurapati KR, Jayant RD, Sagar V, Nair MP (2015) Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update. Front Cell Neurosci 9:212. https://doi.org/10.3389/fncel.2015.00212
Barclay RA, Schwab A, DeMarino C, Akpamagbo Y, Lepene B, Kassaye S, Iordanskiy S, Kashanchi F (2017) Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem 292(36):14764. https://doi.org/10.1074/jbc.A117.793521
Bernard MA, Zhao H, Yue SC, Anandaiah A, Koziel H, Tachado SD (2014) Novel HIV-1 MiRNAs stimulate TNFα release in human macrophages via TLR8 signaling pathway. PLoS One 9(9):e106006. https://doi.org/10.1371/journal.pone.0106006
Betzer, O., Perets, N., Barnoy, E., Offen, D., & Popovtzer, R. (2018). Labeling and tracking exosomes within the brain using gold nanoparticles (Vol. 10506): SPIE
Braun T, Kleusch C, Naumovska E, Merkel R, Csiszar A (2016) A bioanalytical assay to distinguish cellular uptake routes for liposomes. Cytometry A 89(3):301–308. https://doi.org/10.1002/cyto.a.22792
Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 338(1–2):21–30. https://doi.org/10.1016/j.jim.2008.07.007
Chahar HS, Bao X, Casola A (2015) Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses 7(6):3204–3225. https://doi.org/10.3390/v7062770
Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV et al (2016) Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng 9(4):509–529. https://doi.org/10.1007/s12195-016-0458-3
Chuo ST-Y, Chien JC-Y, Lai CP-K (2018) Imaging extracellular vesicles: current and emerging methods. J Biomed Sci 25(1):91–91. https://doi.org/10.1186/s12929-018-0494-5
Cooper JM, Wiklander PB, Nordin JZ, Al-Shawi R, Wood MJ, Vithlani M et al (2014) Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 29(12):1476–1485. https://doi.org/10.1002/mds.25978
Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, Vader P (2017) Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release 266:100–108. https://doi.org/10.1016/j.jconrel.2017.09.019
Crews L, Patrick C, Achim CL, Everall IP, Masliah E (2009) Molecular pathology of neuro-AIDS (CNS-HIV). Int J Mol Sci 10(3):1045–1063. https://doi.org/10.3390/ijms10031045
Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, Li G (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal Cancer. Mol Ther 16(4):782–790. https://doi.org/10.1038/mt.2008.1
de Carvalho JV, de Castro RO, da Silva EZ, Silveira PP, da Silva-Januario ME, Arruda E et al (2014) Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS One 9(11):e113691. https://doi.org/10.1371/journal.pone.0113691
DeMarino C, Schwab A, Pleet M, Mathiesen A, Friedman J, El-Hage N, Kashanchi F (2017) Biodegradable nanoparticles for delivery of therapeutics in CNS infection. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 12(1):31–50. https://doi.org/10.1007/s11481-016-9692-7
Didiot MC, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K et al (2016) Exosome-mediated delivery of Hydrophobically modified siRNA for huntingtin mRNA silencing. Mol Ther 24(10):1836–1847. https://doi.org/10.1038/mt.2016.126
Doeppner TR, Bahr M, Giebel B, Hermann DM (2018) Immunological and non-immunological effects of stem cell-derived extracellular vesicles on the ischaemic brain. Ther Adv Neurol Disord 11:1756286418789326. https://doi.org/10.1177/1756286418789326
Druzhkova TA, Yakovlev AA (2018) Exosome drug delivery through the blood–brain barrier: experimental approaches and potential applications. Neurochem J 12(3):195–204. https://doi.org/10.1134/S1819712418030030
Duechler M (2013) Vehicles for small interfering RNA transfection: exosomes versus synthetic Nanocarriers. DNA and RNA Nanotechnology 1
Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141. https://doi.org/10.1021/mp200394t
Fu H, McCarty DM (2016) Crossing the blood–brain-barrier with viral vectors. Curr Opin Virol 21:87–92. https://doi.org/10.1016/j.coviro.2016.08.006
Fuhrmann G, Herrmann IK, Stevens MM (2015a) Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. Nano Today 10(3):397–409. https://doi.org/10.1016/j.nantod.2015.04.004
Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM (2015b) Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 205:35–44. https://doi.org/10.1016/j.jconrel.2014.11.029
Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 37(1):48–57. https://doi.org/10.1016/j.nbd.2009.07.028
Gangadaran, P., Li, X. J., Lee, H. W., Oh, J. M., Kalimuthu, S., Rajendran, R. L., ... Ahn, B. C. (2017). A new bioluminescent reporter system to study the biodistribution of systematically injected tumor-derived bioluminescent extracellular vesicles in mice. Oncotarget, 8(66), 109894-109914. Doi: https://doi.org/10.18632/oncotarget.22493
Gilligan KE, Dwyer RM (2017) Engineering exosomes for Cancer therapy. Int J Mol Sci 18(6). https://doi.org/10.3390/ijms18061122
Gourlay J, Morokoff AP, Luwor RB, Zhu HJ, Kaye AH, Stylli SS (2017) The emergent role of exosomes in glioma. J Clin Neurosci 35:13–23. https://doi.org/10.1016/j.jocn.2016.09.021
Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z et al (2015) Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 207:18–30. https://doi.org/10.1016/j.jconrel.2015.03.033
Harmati M, Tarnai Z, Decsi G, Kormondi S, Szegletes Z, Janovak L et al (2017) Stressors alter intercellular communication and exosome profile of nasopharyngeal carcinoma cells. J Oral Pathol Med 46(4):259–266. https://doi.org/10.1111/jop.12486
Heinemann ML, Ilmer M, Silva LP, Hawke DH, Recio A, Vorontsova MA et al (2014) Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A 1371:125–135. https://doi.org/10.1016/j.chroma.2014.10.026
Hersh DS, Wadajkar AS, Roberts N, Perez JG, Connolly NP, Frenkel V et al (2016) Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des 22(9):1177–1193
Hoen ENMNT, van der Vlist EJ, Aalberts M, Mertens HCH, Bosch BJ, Bartelink W et al (2012) Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8(5):712–720. https://doi.org/10.1016/j.nano.2011.09.006
Hu G, Yang L, Cai Y, Niu F, Mezzacappa F, Callen S et al (2016) Emerging roles of extracellular vesicles in neurodegenerative disorders: focus on HIV-associated neurological complications. Cell Death Dis 7(11):e2481–e2481. https://doi.org/10.1038/cddis.2016.336
Huey R, Hawthorne S, McCarron P (2017) The potential use of rabies virus glycoprotein-derived peptides to facilitate drug delivery into the central nervous system: a mini review. J Drug Target 25(5):379–385. https://doi.org/10.1080/1061186x.2016.1223676
Izquierdo-Useros N, Puertas MC, Borras FE, Blanco J, Martinez-Picado J (2011) Exosomes and retroviruses: the chicken or the egg? Cell Microbiol 13(1):10–17. https://doi.org/10.1111/j.1462-5822.2010.01542.x
Jan AT, Malik MA, Rahman S, Yeo HR, Lee EJ, Abdullah TS, Choi I (2017) Perspective insights of exosomes in neurodegenerative diseases: a critical appraisal. Front Aging Neurosci 9:317–317. https://doi.org/10.3389/fnagi.2017.00317
Jawahar N, Meyyanathan S (2012) Polymeric nanoparticles for drug delivery and targeting: a comprehensive review. Review Article 1(4):217–223. https://doi.org/10.4103/2278-344x.107832
Jaworski E, Saifuddin M, Sampey G, Shafagati N, Van Duyne R, Iordanskiy S et al (2014) The use of Nanotrap particles Technology in Capturing HIV-1 Virions and viral proteins from infected cells. PLoS One 9(5):e96778. https://doi.org/10.1371/journal.pone.0096778
Johnston MJ, Semple SC, Klimuk SK, Ansell S, Maurer N, Cullis PR (2007) Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta 1768(5):1121–1127. https://doi.org/10.1016/j.bbamem.2007.01.019
Kang YJ, Cutler EG, Cho H (2018) Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Convergence 5(1):35–35. https://doi.org/10.1186/s40580-018-0168-8
Kanmogne GD, Schall K, Leibhart J, Knipe B, Gendelman HE, Persidsky Y (2007) HIV-1 gp120 compromises blood-brain barrier integrity and enhances monocyte migration across blood-brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 27(1):123–134. https://doi.org/10.1038/sj.jcbfm.9600330
Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O et al (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335(1):201–204. https://doi.org/10.1016/j.canlet.2013.02.019
Katsiougiannis S (2015) Extracellular Vesicles: Evolving Contributors in Autoimmunity. ForumImmunDisTher, 6(3-4), 163-170. https://doi.org/10.1615/ForumImmunDisTher.2016016491
Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z et al (2016) Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci Rep 6:25309. https://doi.org/10.1038/srep25309
Kaushik A, Jayant RD, Nair M (2018) Nanomedicine for neuroHIV/AIDS management. Nanomedicine (Lond) 13(7):669–673. https://doi.org/10.2217/nnm-2018-0005
Kevadiya BD, Woldstad C, Ottemann BM, Dash P, Sajja BR, Lamberty B et al (2018) Multimodal Theranostic Nanoformulations permit magnetic resonance bioimaging of antiretroviral drug particle tissue-cell biodistribution. Theranostics 8(1):256–276. https://doi.org/10.7150/thno.22764
Kodidela S, Wang Y, Patters BJ, Gong Y, Sinha N, Ranjit S et al (2019) Proteomic profiling of exosomes derived from plasma of HIV-infected alcohol drinkers and cigarette smokers. J NeuroImmune Pharmacol. https://doi.org/10.1007/s11481-019-09853-2
Kojima R, Bojar D, Rizzi G, Hamri GC-E, El-Baba MD, Saxena P et al (2018) Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun 9(1):1305. https://doi.org/10.1038/s41467-018-03733-8
Konadu KA, Huang MB, Roth W, Armstrong W, Powell M, Villinger F, Bond V (2016) Isolation of exosomes from the plasma of HIV-1 positive individuals. J Vis Exp 107. https://doi.org/10.3791/53495
Kuo YC, Chen HH (2006) Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood-brain barrier. Int J Pharm 327(1–2):160–169. https://doi.org/10.1016/j.ijpharm.2006.07.044
Kuo YC, Su FL (2007) Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. Int J Pharm 340(1–2):143–152. https://doi.org/10.1016/j.ijpharm.2007.03.012
Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire C, Chen JW et al (2014) Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8(1):483–494. https://doi.org/10.1021/nn404945r
Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6(6):651–663
Lee K, Shao H, Weissleder R, Lee H (2015) Acoustic purification of extracellular microvesicles. ACS Nano 9(3):2321–2327. https://doi.org/10.1021/nn506538f
Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y et al (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11(1):110–122. https://doi.org/10.1111/j.1600-0854.2009.01006.x
Levanova A, Poranen MM (2018) RNA interference as a prospective tool for the control of human viral infections. Front Microbiol 9:2151–2151. https://doi.org/10.3389/fmicb.2018.02151
Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X et al (2015) Targeted exosome-mediated delivery of opioid receptor mu siRNA for the treatment of morphine relapse. Sci Rep 5:17543. https://doi.org/10.1038/srep17543
Liu C, Guo J, Tian F, Yang N, Yan F, Ding Y et al (2017) Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano 11(7):6968–6976. https://doi.org/10.1021/acsnano.7b02277
Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D (2017) Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 38(6):754–763. https://doi.org/10.1038/aps.2017.12
Lv L-L, Wu W-J, Feng Y, Li Z-L, Tang T-T, Liu B-C (2018) Therapeutic application of extracellular vesicles in kidney disease: promises and challenges. J Cell Mol Med 22(2):728–737. https://doi.org/10.1111/jcmm.13407
Madison MN, Okeoma CM (2015) Exosomes: implications in HIV-1 pathogenesis. Viruses 7(7):4093–4118. https://doi.org/10.3390/v7072810
Mäger I, Meyer AH, Li J, Lenter M, Hildebrandt T, Leparc G, Wood MJA (2017) Targeting blood-brain-barrier transcytosis – perspectives for drug delivery. Neuropharmacology 120:4–7. https://doi.org/10.1016/j.neuropharm.2016.08.025
Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M (2017) Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther 11:325–335. https://doi.org/10.2147/DDDT.S100075
Mathieu M, Martin-Jaular L, Lavieu G, Thery C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21(1):9–17. https://doi.org/10.1038/s41556-018-0250-9
Matsumoto J, Stewart T, Banks WA, Zhang J (2017) The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr Pharm Des 23(40):6206–6214. https://doi.org/10.2174/1381612823666170913164738
Mishra DK, Shandilya R, Mishra PK (2018) Lipid based nanocarriers: a translational perspective. Nanomedicine 14(7):2023–2050. https://doi.org/10.1016/j.nano.2018.05.021
Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330. https://doi.org/10.1096/fj.04-2747rev
Mulcahy, LA, Pink, RC, & Carter, DRF (2014). Routes and mechanisms of extracellular vesicle uptake. JEV, 3, 10.3402/jev.v3403.24641. https://doi.org/10.3402/jev.v3.24641
Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P (2013) Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma Multiforme cells conferred Chemosensitivity. Mol Ther Nucleic Acids 2(10):e126–e126. https://doi.org/10.1038/mtna.2013.60
Murphy, AM, & Rabkin, SD (2013). Current status of gene therapy for brain tumors. Transl Res. 161(4), 339-354. https://doi.org/10.1016/j.trsl.2012.11.003
Nair LS, Laurencin CT (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biotechnol 102:47–90
Nair M, Jayant RD, Kaushik A, Sagar V (2016) Getting into the brain: potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 103:202–217. https://doi.org/10.1016/j.addr.2016.02.008
Nawaz M, Shah N, Zanetti BR, Maugeri M, Silvestre RN, Fatima F et al (2018) Extracellular vesicles and matrix remodeling enzymes: the emerging roles in extracellular matrix remodeling, progression of diseases and tissue repair. Cells 7(10). https://doi.org/10.3390/cells7100167
Neuwelt EA, Frenkel EP, Rapoport S, Barnett P (1980) Effect of osmotic blood-brain barrier disruption on methotrexate pharmacokinetics in the dog. Neurosurgery 7(1):36–43
Neviani P, Wise PM, Murtadha M, Liu CW, Wu C-H, Jong AY et al (2018) Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms. Cancer Res, canres.0779.2018. https://doi.org/10.1158/0008-5472.CAN-18-0779
Nguyen DG, Booth A, Gould SJ, Hildreth JE (2003) Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J Biol Chem 278(52):52347–52354. https://doi.org/10.1074/jbc.M309009200
Nolte-'t Hoen E, Cremer T, Gallo RC, Margolis LB (2016) Extracellular vesicles and viruses: are they close relatives? Proc Natl Acad Sci U S A 113(33):9155–9161. https://doi.org/10.1073/pnas.1605146113
Oksvold MP, Neurauter A, Pedersen KW (2015) Magnetic bead-based isolation of exosomes. Methods Mol Biol 1218:465–481. https://doi.org/10.1007/978-1-4939-1538-5_27
Oosthuyzen W, Sime NE, Ivy JR, Turtle EJ, Street JM, Pound J et al (2013) Quantification of human urinary exosomes by nanoparticle tracking analysis. J Physiol 591(23):5833–5842. https://doi.org/10.1113/jphysiol.2013.264069
Pacienza N, Lee RH, Bae EH, Kim DK, Liu Q, Prockop DJ, Yannarelli G (2019) In vitro macrophage assay predicts the in vivo anti-inflammatory potential of exosomes from human mesenchymal stromal cells. Mol Ther Methods Clin Dev 13:67–76. https://doi.org/10.1016/j.omtm.2018.12.003
Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972. https://doi.org/10.1038/jcbfm.2012.126
Patters BJ, Kumar S (2018) The role of exosomal transport of viral agents in persistent HIV pathogenesis. Retrovirology 15(1):79. https://doi.org/10.1186/s12977-018-0462-x
Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D (2019) Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease. J Neuro-Oncol. https://doi.org/10.1007/s13365-018-0695-4
Quek C, Hill AF (2017) The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun 483(4):1178–1186. https://doi.org/10.1016/j.bbrc.2016.09.090
Rajagopal C, Harikumar KB (2018) The origin and functions of exosomes in Cancer. Front Oncol 8:66–66. https://doi.org/10.3389/fonc.2018.00066
Ramirez MI, Amorim MG, Gadelha C, Milic I, Welsh JA, Freitas VM et al (2018) Technical challenges of working with extracellular vesicles. Nanoscale 10(3):881–906. https://doi.org/10.1039/c7nr08360b
Ranjit S, Patters BJ, Gerth KA, Haque S, Choudhary S, Kumar S (2018) Potential neuroprotective role of astroglial exosomes against smoking-induced oxidative stress and HIV-1 replication in the central nervous system. Expert Opin Ther Targets 22(8):703–714. https://doi.org/10.1080/14728222.2018.1501473
Raymond AD, Diaz P, Chevelon S, Agudelo M, Yndart-Arias A, Ding H et al (2016) Microglia-derived HIV Nef+ exosome impairment of the blood-brain barrier is treatable by nanomedicine-based delivery of Nef peptides. J Neuro-Oncol 22(2):129–139. https://doi.org/10.1007/s13365-015-0397-0
Rooj AK, Mineo M, Godlewski J (2016) MicroRNA and extracellular vesicles in glioblastoma: small but powerful. Brain tumor pathology 33(2):77–88. https://doi.org/10.1007/s10014-016-0259-3
Roy U, Drozd V, Durygin A, Rodriguez J, Barber P, Atluri V et al (2018) Characterization of Nanodiamond-based anti-HIV drug delivery to the brain. Sci Rep 8(1):1603. https://doi.org/10.1038/s41598-017-16703-9
Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, Pereira de Almeida L (2017) Extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J Control Release 262:247–258. https://doi.org/10.1016/j.jconrel.2017.07.001
Sampey GC, Saifuddin M, Schwab A, Barclay R, Punya S, Chung M-C et al (2016) Exosomes from HIV-1-infected cells stimulate production of pro-inflammatory cytokines through trans-activating response (TAR) RNA. J Biol Chem 291(3):1251–1266. https://doi.org/10.1074/jbc.M115.662171
Schorey JS, Cheng Y, Singh PP, Smith VL (2015) Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 16(1):24–43. https://doi.org/10.15252/embr.201439363
Shafagati N, Lundberg L, Baer A, Patanarut A, Fite K, Lepene B, Kehn-Hall K (2015) The use of Nanotrap particles in the enhanced detection of Rift Valley fever virus nucleoprotein. PLoS One 10(5):e0128215. https://doi.org/10.1371/journal.pone.0128215
Shah R, Patel T, Freedman JE (2018) Circulating extracellular vesicles in human disease. N Engl J Med 379(10):958–966. https://doi.org/10.1056/NEJMra1704286
Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C et al (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18(9):1606–1614. https://doi.org/10.1038/mt.2010.105
Sutaria DS, Badawi M, Phelps MA, Schmittgen TD (2017) Achieving the promise of therapeutic extracellular vesicles: the devil is in details of therapeutic loading. Pharm Res 34(5):1053–1066. https://doi.org/10.1007/s11095-017-2123-5
Takeuchi H, Kojima H, Yamamoto H, Kawashima Y (2000) Polymer coating of liposomes with a modified polyvinyl alcohol and their systemic circulation and RES uptake in rats. J Control Release 68(2):195–205
Tan L, Wu H, Liu Y, Zhao M, Li D, Lu Q (2016) Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity 49(6):357–365. https://doi.org/10.1080/08916934.2016.1191477
Tang X, Lu H, Dooner M, Chapman S, Quesenberry PJ, Ramratnam B (2018) Exosomal tat protein activates latent HIV-1 in primary, resting CD4+ T lymphocytes. JCI Insight 3(7). https://doi.org/10.1172/jci.insight.95676
Teow SY, Nordin AC, Ali SA, Khoo AS (2016) Exosomes in human immunodeficiency virus type I pathogenesis: threat or opportunity? Adv Virol 2016:9852494–9852498. https://doi.org/10.1155/2016/9852494
Thakur A, Zou H, Yang M, Lee Y (2018) Abstract 3720: augmented loading efficiency of doxorubicin into glioma-derived exosomes by an integrated microfluidic device. Cancer Res 78(13 Supplement):3720. https://doi.org/10.1158/1538-7445.AM2018-3720
Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C et al (2018) Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 150:137–149. https://doi.org/10.1016/j.biomaterials.2017.10.012
Tumne, A., Prasad, V. S., Chen, Y., Stolz, D. B., Saha, K., Ratner, D. M., ... Gupta, P. (2009). Noncytotoxic suppression of human immunodeficiency virus type 1 transcription by exosomes secreted from CD8<sup>+</sup> T Cells. J Virol, 83(9), 4354. doi: https://doi.org/10.1128/JVI.02629-08
Turturici G, Tinnirello R, Sconzo G, Geraci F (2014) Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol 306(7):C621–C633. https://doi.org/10.1152/ajpcell.00228.2013
Upadhyay RK (2014) Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int 2014:869269. https://doi.org/10.1155/2014/869269
van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y, Tilles AW, Yarmush ML (2008) Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 47(5):1634–1643. https://doi.org/10.1002/hep.22236
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE (2015) Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 19:1–12. https://doi.org/10.1016/j.drup.2015.02.002
Viaud S, Ploix S, Lapierre V, Théry C, Commere P-H, Tramalloni D et al (2011) Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: a critical role of interferon-γ. J Immunother 34(1):65–75
Webber J, Clayton A (2013) How pure are your vesicles? JEV 2. https://doi.org/10.3402/jev.v2i0.19861
Welch JL, Stapleton JT, Okeoma CM (2019) Vehicles of intercellular communication: exosomes and HIV-1. https://doi.org/10.1099/jgv.0.001193
Wiklander OP, Nordin JZ, O'Loughlin A, Gustafsson Y, Corso G, Mager I et al (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 4:26316. https://doi.org/10.3402/jev.v4.26316
Willis GR, Kourembanas S, Mitsialis SA (2017) Toward exosome-based therapeutics: isolation, heterogeneity, and fit-for-purpose potency. Front. Cardiovasc. Med. 4:63–63. https://doi.org/10.3389/fcvm.2017.00063
Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2. https://doi.org/10.3402/jev.v2i0.20360
Wong HL, Chattopadhyay N, Wu XY, Bendayan R (2010) Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev 62(4–5):503–517. https://doi.org/10.1016/j.addr.2009.11.020
Wong HL, Wu XY, Bendayan R (2012) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64(7):686–700. https://doi.org/10.1016/j.addr.2011.10.007
Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013a) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33(11):1711–1715. https://doi.org/10.1038/jcbfm.2013.152
Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y et al (2013b) MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31(12):2737–2746. https://doi.org/10.1002/stem.1409
Xin H, Katakowski M, Wang F, Qian J-Y, Liu XS, Ali MM et al (2017) MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 48(3):747–753. https://doi.org/10.1161/STROKEAHA.116.015204
Yamashita T, Takahashi Y, Nishikawa M, Takakura Y (2016) Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur J Pharm Biopharm 98:1–8. https://doi.org/10.1016/j.ejpb.2015.10.017
Yamashita T, Takahashi Y, Takakura Y (2018) Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull 41(6):835–842. https://doi.org/10.1248/bpb.b18-00133
Yáñez-Mó M, Siljander PRM, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI et al (2015) Biological properties of extracellular vesicles and their physiological functions. JEV 4(1):27066. https://doi.org/10.3402/jev.v4.27066
Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R et al (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014. https://doi.org/10.1007/s11095-014-1593-y
You B, Xu W, Zhang B (2018) Engineering exosomes: a new direction for anticancer treatment. Am J Cancer Res 8(8):1332–1342
Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E, Kabanov AV (2017) Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142:1–12. https://doi.org/10.1016/j.biomaterials.2017.07.011
Zagrean, A.-M., Hermann, D. M., Opris, I., Zagrean, L., & Popa-Wagner, A. (2018). Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Therapeutic Implications. Front. Neurosci, 12, 811–811. doi: https://doi.org/10.3389/fnins.2018.00811
Zarovni N, Corrado A, Guazzi P, Zocco D, Lari E, Radano G et al (2015) Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods 87:46–58. https://doi.org/10.1016/j.ymeth.2015.05.028
Zeringer E, Barta T, Li M, Vlassov AV (2015) Strategies for isolation of exosomes. Cold Spring Harb Protoc 2015(4):319–323. https://doi.org/10.1101/pdb.top074476
Zhang Y, Hu YW, Zheng L, Wang Q (2017) Characteristics and roles of exosomes in cardiovascular disease. DNA Cell Biol 36(3):202–211. https://doi.org/10.1089/dna.2016.3496
Zhou Y, Peng Z, Seven ES, Leblanc RM (2018) Crossing the blood-brain barrier with nanoparticles. J. Control. Release 270:290–303. https://doi.org/10.1016/j.jconrel.2017.12.015
Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779. https://doi.org/10.1038/mt.2011.164