Extension procedures for lattice Lipschitz operators on Euclidean spaces
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas - Tập 117 - Trang 1-16 - 2023
Tóm tắt
We present a new class of Lipschitz operators on Euclidean lattices that we call lattice Lipschitz maps, and we prove that the associated McShane and Whitney formulas provide the same extension result that holds for the real valued case. Essentially, these maps satisfy a (vector-valued) Lipschitz inequality involving the order of the lattice, with the peculiarity that the usual Lipschitz constant becomes a positive real function. Our main result shows that, in the case of Euclidean space, being lattice Lipschitz is equivalent to having a diagonal representation, in which the coordinate coefficients are real-valued Lipschitz functions. We also show that in the linear case the extension of a diagonalizable operator from the values in their eigenvectors coincide with the operator obtained both from the McShane and the Whitney formulae. Our work on such extension/representation formulas is intended to follow current research on the design of machine learning algorithms based on the extension of Lipschitz functions.
Tài liệu tham khảo
Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Berlin (2006)
Anil, C., Lucas, J., Grosse, R.: Sorting out Lipschitz function approximation. In: Proceedings of the 36th International Conference on Machine Learning, PMLR 97, pp. 291–301 (2019)
Appell, J., De Pascale, E., Vignoli, A.: Nonlinear Spectral Theory. Walter de Gruyter, Berlin (2008)
Asadi, K., Misra, D., Littman, M.: Lipschitz continuity in model-based reinforcement learning. In: Proceedings of the 35th International Conference on Machine Learning, PMLR 80, pp. 264–273 (2018)
Calabuig, J.M., Falciani, H., Sánchez Pérez, E.A.: Dreaming machine learning: Lipschitz extensions for reinforcement learning on financial markets. Neurocomputing 398, 172–184 (2020)
Cavalcante, W.V., Rueda, P., Sánchez Pérez, E.A.: Extension of Lipschitz-type operators on Banach function spaces. Topol. Methods Nonlinear Anal. 57(1), 343–364 (2021)
Cobzaş, Ş, Miculescu, R., Nicolae, A.: Lipschitz Functions. Springer, Berlin (2019)
Cohen, J.E., Huster, T., Cohen, R.: Universal Lipschitz approximation in bounded depth neural networks. arXiv preprint arXiv:1904.04861 (2019)
da Silva, E.B., Fernandez, D.L., de Andrade Neves, M.V.: A spectral theorem for bilinear compact operators in Hilbert spaces. Banach J. Math. Anal. 15(2), 1–36 (2021)
da Silva, E.B., Fernandez, D.L., de Andrade Neves, M.V.: Schmidt representation of bilinear operators on Hilbert spaces. Indag. Math. 33(2), 494–516 (2022)
Erdoğan, E., Sánchez Pérez, E.A.: Approximate diagonal integral representations and eigenmeasures for Lipschitz operators on Banach spaces. Mathematics 10(2), 220 (2022)
Erdoğan, E., Sánchez Pérez, E.A.: Eigenmeasures and stochastic diagonalization of bilinear maps. Math. Methods Appl. Sci. 44(6), 5021–5039 (2021)
Falciani, H., Sánchez Pérez, E.A.: Semi-Lipschitz functions and machine learning for discrete dynamical systems on graphs. Mach. Learn. 111(5), 1–33 (2022)
Furi, M., Martelli, M., Vignoli, A.: Contributions to the spectral theory for nonlinear operators in Banach spaces. Ann. Mat. Pura Appl. 118(1), 229–294 (1978)
Jiang, S., Li, Z.: Order-Lipschitz mappings restricted with linear bounded mappings in normed vector spaces without normalities of involving cones via methods of upper and lower solutions. Filomat 32(19), 6691–6698 (2018)
Kirszbraun, M.D.: Über die zusammenziehende und Lipschitzsche Transformationen. Fundam. Math. 22, 77–108 (1934)
Liu, H., Xu, S.: Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings. Fixed Point Theory Appl. 2013(1), 1–10 (2013)
McShane, E.J.: Extension of range of functions. Bull. Am. Math. Soc. 40(12), 837–842 (1934)
Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin (2012)
Németh, S.Z.: Iterative methods for nonlinear complementarity problems on isotone projection cones. J. Math. Anal. Appl. 350(1), 340–347 (2009)
Papageorgiou, N.: Nonsmooth analysis on partially ordered vector spaces. II. Nonconvex case, Clarke’s theory. Pac. J. Math. 109(2), 463–495 (1983)
Phillips, J.R.: Eigenfunction expansions for self-adjoint bilinear operators in Hilbert space. PhD. Thesis. Oregon State University (1966)
Proinov, P.: A unified theory of cone metric spaces and its applications to the fixed point theory. Fixed Point Theory Appl. 2013(1), 1–38 (2013)
von Luxburg, U., Bousquet, O.: Distance-based classification with Lipschitz functions. J. Mach. Learn. Res. 5(Jun), 669–695 (2004)
Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934)
