Extension of the Bessmertnyĭ Realization Theorem for Rational Functions of Several Complex Variables

Anthony Stefan1, Aaron Welters1
1Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, USA

Tóm tắt

We prove a realization theorem for rational functions of several complex variables which extends the main theorem of Bessmertnyĭ (in: Alpay, Gohberg, Vinnikov (eds) Interpolation Theory, Systems Theory and Related Topics. Operator Theory Advances and Applications vol 134. Birkhauser Verlag, Basel, pp 157–185, 2002). In contrast to Bessmertnyĭ’s approach of solving large systems of linear equations, we use an operator theoretical approach based on the theory of Schur complements. This leads to a simpler and more “natural” construction to solving the realization problem as we need only apply elementary algebraic operations to Schur complements such as sums, products, inverses, and compositions. A novelty of our approach is the use of Kronecker product as opposed to the matrix product in the realization problem. As such our synthetic approach leads to a solution of the realization problem that has potential for further extensions and applications within multidimensional systems theory especially for those linear models associated with electric circuits, networks, and composites.

Từ khóa


Tài liệu tham khảo

Alpay, D., Ball, J., Gohberg, I., Rodman, L.: Realization and Factorization for Rational Matrix Functions with Symmetries. Operator Theory: Advances and Applications, vol. 47. Birkhäuser Verlag, Basel (1990). https://doi.org/10.1007/978-3-0348-7701-5_1

Alpay, D., Ball, J., Gohberg, I., Rodman, L.: State space of automorphisms of rational matrix functions. Integral Equ. Oper. Theory 15, 349–377 (1992). https://doi.org/10.1007/BF01200324

Alpay, D., Ball, J., Gohberg, I., Rodman, L.: The two-sided residue interpolation in the Stieltjes class for matrix functions. Linear Algebra Appl. 208–209, 485–521 (1994). https://doi.org/10.1016/0024-3795(94)90458-8

Alpay, D., Ball, J., Gohberg, I., Rodman: J-unitary preserving automorphisms of rational matrix functions: state space theory, interpolation, and factorization. Linear Algebra Appl. 197, 531–566 (1994). https://doi.org/10.1016/0024-3795(94)90503-7

Alpay, D., Dubi, C.: A realization theorem for rational functions of several complex variables. Syst. Control Lett. 49, 225–229 (2003). https://doi.org/10.1016/S0167-6911(02)00326-2

Alpay, D., Kalyuzhnyĭ-Verbovetzkiĭ, D.: Matrix-J-unitary non-commutative rational formal power series. In: Alpay, D., Gohberg, I. (eds.) The State Space Method Generalizations and Applications. Operator Theory: Advances and Applications, vol. 6. Birkhäuser, Basel (2005). https://doi.org/10.1007/3-7643-7431-4_2

Alpay, D., Gohberg, I.: Unitary Rational Matrix Functions. Operator Theory: Advances and Applications, vol. 33. Birkhäuser Verlag, Basel (1988). https://doi.org/10.1007/978-3-0348-5469-6_5

Anderson, B.D.O., Newcomb, R.W.: Impedance synthesis via state-space techniques. Proc. Inst. Electr. Eng. 115(7), 928–936 (1968). https://doi.org/10.1049/piee.1968.0170

Anderson, W.N., Jr.: Shorted operators. SIAM J. Appl. Math. 20, 520–525 (1971). https://doi.org/10.1137/0120053

Anderson, W.N., Jr., Trapp, G.E.: Shorted operators. II. SIAM J. Appl. Math. 28, 60–71 (1975). https://doi.org/10.1137/0128007

Ando, T.: Schur complements and matrix inequalities: operator-theoretical approach. In: Zhang, F. (ed.) The Schur Complement and Its Applications, Numerical Methods and Algorithms, vol. 4, pp. 137–162. Springer, Berlin (2005). https://doi.org/10.1007/0-387-24273-2_6

Arias, M., Corach, G., Maestripieri, A.: Range additivity, shorted operator and the Sherman–Morrison–Woodbury formula. Linear Algebra Appl. 467, 86–99 (2015). https://doi.org/10.1016/j.laa.2014.11.001

Ball, J.A.: Multidimensional circuit synthesis and multivariable dilation theory. Multidimens. Syst. Signal Process. 22, 27–44 (2011). https://doi.org/10.1007/s11045-010-0123-2

Ball, J., Groenwald, G., Malkorn, T.: Structured noncommutative multidimensional linear systems. SIAM J. Control Optim. 44(4), 1474–1528 (2005). https://doi.org/10.1137/S0363012904443750

Bart, H., Gohberg, I., Kaashoek, M.A., Ran, A.C.M.: Factorization of Matrix and Operator Functions: The State Space Method. Operator Theory: Advances and Applications, vol. 178. Birkhäuser Verlag, Basel (2008). https://doi.org/10.1007/978-3-7643-8268-1

Bart, H., Gohberg, I., Kaashoek, M.A.: Minimal Factorization of Matrix and Operator Functions: The State Space Method. Operator Theory: Advances and Applications, vol. 1. Birkhäuser Verlag, Basel-Boston, Mass (1979). https://doi.org/10.1007/978-3-0348-6293-6

Bessmertnyĭ, M.F.: Functions of Several Variables in the Theory of Finite Linear Structures. Kharkov University, Kharkov (1982). (Ph. D. Thesis)

Bessmertnyĭ, M.F.: On realizations of rational matrix functions of several complex variables. In: Alpay, D., Gohberg, I., Vinnikov, V. (eds.) Interpolation Theory, Systems Theory and Related Topics. Operator Theory: Advances and Applications, vol. 134, pp. 157–185. Birkhäuser Verlag, Basel (2002)

Bessmertnyĭ, M.F.: Functions of several variables in the theory of finite linear structures Part I: analysis. In: Alpay, D., Vinnikov, V. (eds.) Operator Theory, Systems Theory and Scattering Theory: Multidimensional Generalizations. Operator Theory: Advances and Applications, vol. 157, pp. 91–106. Birkhäuser Verlag, Basel (2005). https://doi.org/10.1007/3-7643-7303-2_3

Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications. Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511760860

Bose, N., Newcomb, R.: Tellegens theorem and multivariable realizability theory. Int. J. Electron. 36(3), 417–425 (1974). https://doi.org/10.1080/00207217408900421

Bott, R., Duffin, R.J.: Impedance synthesis without use of transformers. J. Appl. Phys. 20, 816 (1949). https://doi.org/10.1063/1.1698532

Bott, R., Duffin, R.J.: The algebra of networks. Trans. Am. Math. Soc. 74, 99–109 (1953). https://doi.org/10.1090/S0002-9947-1953-0056573-X

Bultheel, A., Van Barel, M.: Padé techniques for model reduction in linear system theory: a survey. J. Comput. Appl. Math. (1986). https://doi.org/10.1016/0377-0427(86)90076-2

Cassier, M., Welters, A., Milton, G.W.: Analyticity of the Dirichlet-to-Neumann map for the time-harmonic Maxwells equations. In: Milton, G.W. (ed.) Extending the Theory of Composites to Other Areas of Science Chap. 4, pp. 95–121. Milton-Patton Publishers, Salt Lake City (2016)

Cassier, M., Welters, A., Milton, G.W.: A rigorous approach to the field recursion method for two-component composites with isotropic phases. In: Milton, G.W. (ed.) Extending the Theory of Composites to Other Areas of Science Chap. 10, pp. 287–307. Milton-Patton Publishers, Salt Lake City (2016)

Cohn, P., Reutenauer, C.: A normal form in free fields. Can. J. Math. 46(3), 517–531 (1994). https://doi.org/10.4153/CJM-1994-027-4

Cohn, P., Reutenauer, C.: On the construction of the free field. Int. J. Algebra Comput. 9(3), 307–323 (1999). https://doi.org/10.1142/S0218196799000205

Doan, M., Nguyen, T., Lin, Z., Xu, L.: Notes on minimal realizations of multidimensional systems. multidimens. Syst. Signal Process. 26, 519–553 (2015). https://doi.org/10.1007/s11045-014-0297-0

Duffin, R.J.: An analysis of the Wang algebra of networks. Trans. Am. Math. Soc. 93, 114–131 (1959). https://doi.org/10.1090/S0002-9947-1959-0109161-6

Duffin, R.J.: Elementary operations which generate network matrices. Proc. Am. Math. Soc. 6, 335–339 (1955). https://doi.org/10.1090/S0002-9939-1955-0072725-4

Duffin, R.J., Morley, T.D.: Wang algebra and matroids. IEEE Trans. Circuits Syst. 25, 755–762 (1978). https://doi.org/10.1109/TCS.1978.1084531

Duffin, R. J., Hazony, D., Morrison, N.: The gyration operator in network theory. Scientific Report No. 7, AF 19 (628) 1699, CRST I Sills Bld 5285 Port Royal Road, Springfield, Virginia (1965). https://doi.org/10.21236/ad0616329

Duffin, R.J., Hazony, D., Morrison, N.: Network synthesis through hybrid matrices. SIAM J. Appl. Math. 14, 390–413 (1966). https://doi.org/10.1137/0114032

Duffin, R.J., Hazony, D.: The degree of a rational matrix function. SIAM J. 11(3), 645–658 (1963). https://doi.org/10.1137/0111049

Efimov, A.V., Potapov, V.P.: J-expanding matrix functions and their role in the analytical theory of electrical circuits. Russ. Math. Surv. 28(1), 69–140 (1973). https://doi.org/10.1070/rm1973v028n01abeh001397

Fliess, M.: Matrices de Hankel. J. Math. Pures Appl. 53, 197–222 (1974)

Fornasini, E., Marchesini, G.: Doubly-indexed dynamical systems: state-space models and structural properties. Math. Syst. Theory 12, 59–72 (1978). https://doi.org/10.1007/BF01776566

Fornasini, E., Marchesini, G.: State-space realization theory of two-dimensional filters. IEEE Trans. Autom. Control 21(4), 484–492 (1976). https://doi.org/10.1109/TAC.1976.1101305

Galkowski, K.: Minimal state-space realization for a class of linear, discrete, \(n\)D, SISO systems. Int. J. Control 74(13), 1279–1294 (2001). https://doi.org/10.1080/00207170110065901

Garcia, S., Prodan, E., Putinar, M.: Mathematical and physical aspects of complex symmetric operators. J. Phys. A Math. Theor. 47(35), 1–54 (2014). https://doi.org/10.1088/1751-8113/47/35/353001

Gilbert, E.: Controllability and observability in multivariable control systems. SIAM J. Control Ser. A (1963). https://doi.org/10.1137/0301009

Givone, D.D., Roesser, R.P.: Multidimensional linear iterative circuits-general properties. IEEE Trans. Comput. C–21(10), 1067–1073 (1972). https://doi.org/10.1109/T-C.1972.223453

Givone, D.D., Roesser, R.P.: Minimization of multidimensional linear iterative circuits. IEEE Trans. Comput. 22(7), 673–678 (1973). https://doi.org/10.1109/TC.1973.5009134

Grabovsky, Y.: Composite Materials: Mathematical Theory and Exact Relations. IOP Publishing, Bristol (2016). https://doi.org/10.1088/978-0-7503-1048-2

Helton, J.: The characteristic function of operator theory and electrical network realization. Indiana Univ. Math. J. 22(5), 403–414 (1973). https://doi.org/10.1512/iumj.1973.22.22035

Helton, J.: Systems with infinite-dimensional state-space: the Hilbert space approach. Proc. IEEE 64(1), 145–160 (1976). https://doi.org/10.1109/PROC.1976.10076

Helton, J.W., McCullough, S.A., Vinnikov, V.: Noncommutative convexity arises from linear matrix inequalities. J. Funct. Anal. 240, 105–191 (2006). https://doi.org/10.1016/j.jfa.2006.03.018

Helton, J., Mai, T., Speicher, R.: Applications of realizations (aka linearizations) to free probability. J. Funct. Anal. 274(1), 1–79 (2018). https://doi.org/10.1016/j.jfa.2017.10.003

Ho, B., Kalman, R.: Effective construction of linear state-variable models from input/output functions. Automatisierungstechnik 14(1–12), 545–548 (1966). https://doi.org/10.1524/auto.1966.14.112.545

Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991). https://doi.org/10.1017/CBO9780511840371

Horn, R., Johnson, C.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139020411

Jackson, A.: Interview with Raoul Bott. Not. Am. Math. Soc. 48, 374–382 (2001)

Kalman, R.: Irreducible realizations and the degree of a rational matrix. J. Soc. Ind. Appl. Math. (1965). https://doi.org/10.1137/0113034

Kalman, R.: Mathematical description of linear dynamical systems. SIAM. J. Control Ser. A (1963). https://doi.org/10.1137/0301010

Kalyuzhnyĭ-Verbovetzkiĭ, D.: On the Bessmertnyĭ class of homogeneous positive holomorphic functions of several variables. In: Ball, J.A., Helton, J.W., Klaus, M., Rodman, L. (eds.) Current Trends in Operator Theory and Its Applications. Operator Theory: Advances and Applications, vol. 149, pp. 255–289. Birkhäuser-Verlag, Basel. (2004)

Katsnelson, V.E.: Right and Left Joint System Representation of a Rational Matrix Function General Position (System Representation Theory for Dummies). Operator Theory: Advances and Applications, vol. 123, pp. 337–400. Birkhäuser-Verlag, Basel (2001). https://doi.org/10.1007/978-3-0348-8247-7_15

Klep, I., Pascoe, J., Volčič, J.: Regular and positive noncommutative rational functions. J. Lond. Math. Soc. 95(2), 613–632 (2017). https://doi.org/10.1112/jlms.12030

Krein, M.G.: Theory of self-adjoint extensions of semi-bounded Hermitian operators (in Russian). Rec. Math. [Mat. Sbornik] N.S. 20(62), 431–495 (1947)

Krein, M.G., Ovcharenko, I.E.: On the theory of inverse problems for the canonical differential equation. In: Gohberg, I., Sakhnovich, L.A. (eds.) Matrix and Operator Valued Functions. perator Theory: Advances and Applications, vol. 72, pp. 162–170. Birkhäuser-Verlag, Basel. (1994)

Kung, S., Lévy, B., Morf, M., Kailath, T.: New results in \(2\)-D systems theory, Part I: \(2\)-D polynomial matrices, factorization and coprimeness, Part II: \(2\)-D state-space models. In: Realization and the Notions of Controllability, Observability and Minimality, Proc. of IEEE, Vol. 65, No. 6. (1977)

Livšic, M.S.: Operators, Oscillations, Waves (Open Systems). American Mathematical Society, Translated from Russian by Scripta Technica, Ltd., English translation edited by R. Herden; Translations of Mathematical Monographs, Vol. 34 (1973)

Luenberger, D.: Dynamic equations in descriptor form. IEEE Trans. Autom. Control (1977). https://doi.org/10.1109/TAC.1977.1101502

Luenberger, D.: Time invariant descriptor systems. Automatica 14, 5 (1978). https://doi.org/10.1016/0005-1098(78)90006-7

McMillan, B.: Introduction to formal realizability theory-II. Bell Syst. Tech. J. 31(3), 541–600 (1952). https://doi.org/10.1002/j.1538-7305.1952.tb01396.x

Milton, G.W.: Multicomponent composites, electrical networks and new types of continued fractions I. Commun. Math. Phys. 111, 281–327 (1987). https://doi.org/10.1007/BF01217763

Milton, G.W.: Multicomponent composites, electrical networks and new types of continued fractions II. Commun. Math. Phys. 111, 329–372 (1987). https://doi.org/10.1007/BF01238903

Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/CBO9780511613357

Milton, G.W. (ed.): Extending the Theory of Composites to Other Areas of Science. Milton-Patton Publishers, Salt Lake City (2016). https://doi.org/10.1115/1.4035525

Milton, G.W.: Composites and the associated abstract theory. In: Milton, G.W. (ed.) Extending the Theory of Composites to Other Areas of Science. Chap. 2, pp. 47–76. Milton-Patton Publishers, Salt Lake City (2016)

Milton, G.W.: Superfunctions and the algebra of subspace collections and their association with rational functions of several complex variables. In: Milton, G.W. (ed.) Extending the Theory of Composites to Other Areas of Science. Chap. 7, pp. 179–234. Milton-Patton Publishers, Salt Lake City (2016)

Mitra, S., Bhimasankaram, P., Malik, S.: Matrix Partial Orders, Shorted Operators and Applications. World Scientific Publishing, Singapore (2010). https://doi.org/10.1142/7170

Nishio, K., Ando, T.: Characterizations of operations derived from network connections. J. Math. Anal. 53, 539–549 (1976). https://doi.org/10.1016/0022-247X(76)90090-1

Pekarev, E.L.: A note on characterization of the shorted operation. Electron. J. Linear Algebra 27, 155–161 (2014). https://doi.org/10.13001/1081-3810.1609

Reutenauer, C.: Michel Fliess and non-commutative formal power series. Int. J. Control 81(3), 338–343 (2008). https://doi.org/10.1080/00207170701556898

Roesser, R.P.: A Discrete state-space model for linear image processing. IEEE Trans. Autom. Control 20(1), 1–10 (1975). https://doi.org/10.1109/TAC.1975.1100844

Schumacher, J.M.: Linear System Representations. Three Decades of Mathematical System Theory, pp. 382–408. Springer, Berlin, Heidelberg (1989). https://doi.org/10.1007/BFb0008470

Sontag, E.: On first-order equations for multidimensional filters. IEEE Trans. Acoust. Speech Signal Process. 26(5), 480–482 (1978). https://doi.org/10.1109/TASSP.1978.1163124

Stefan, A.: Schur complement algebra and operations with applications in multivariate functions, realizability, and representations. M.S. Thesis, Florida Institute of Technology (2021). https://repository.lib.fit.edu/handle/11141/3260

Stefan, A., Welters, A.: A short proof of the symmetric determinantal representation of polynomials. Linear Algebra Appl. 627, 80–93 (2021). https://doi.org/10.1016/j.laa.2021.06.007

Tellegen, B.D.H.: Synthesis of passive resistanceless four-poles that may violate the reciprocity condition. Philips Res. Rep. 3, 321–337 (1948)

Tsatsomeros, M.J.: Principal pivot transforms: properties and applications. Linear Algebra Appl. 307, 151–165 (2000). https://doi.org/10.1016/S0024-3795(99)00281-5

Tucker, A.W.: A combinatorial equivalence of matrices. In: Bellman, R., Hall, M., Jr. (eds.) Combinatorial Analysis, pp. 129–140. American Mathematical Society, Providence (1960). https://doi.org/10.1090/psapm/010

Xu, L., Fan, H., Lin, Z., Bose, N.: A direct-construction approach to multidimensional realization and LFR uncertainty modeling. Multidimens. Syst. Signal Process. 19, 323–359 (2008). https://doi.org/10.1007/s11045-008-0057-0

Zhang, F. (ed.): The Schur Complement and Its Applications. Springer, Berlin (2005). https://doi.org/10.1007/b105056