Extension of the Bessmertnyĭ Realization Theorem for Rational Functions of Several Complex Variables
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alpay, D., Ball, J., Gohberg, I., Rodman, L.: Realization and Factorization for Rational Matrix Functions with Symmetries. Operator Theory: Advances and Applications, vol. 47. Birkhäuser Verlag, Basel (1990). https://doi.org/10.1007/978-3-0348-7701-5_1
Alpay, D., Ball, J., Gohberg, I., Rodman, L.: State space of automorphisms of rational matrix functions. Integral Equ. Oper. Theory 15, 349–377 (1992). https://doi.org/10.1007/BF01200324
Alpay, D., Ball, J., Gohberg, I., Rodman, L.: The two-sided residue interpolation in the Stieltjes class for matrix functions. Linear Algebra Appl. 208–209, 485–521 (1994). https://doi.org/10.1016/0024-3795(94)90458-8
Alpay, D., Ball, J., Gohberg, I., Rodman: J-unitary preserving automorphisms of rational matrix functions: state space theory, interpolation, and factorization. Linear Algebra Appl. 197, 531–566 (1994). https://doi.org/10.1016/0024-3795(94)90503-7
Alpay, D., Dubi, C.: A realization theorem for rational functions of several complex variables. Syst. Control Lett. 49, 225–229 (2003). https://doi.org/10.1016/S0167-6911(02)00326-2
Alpay, D., Kalyuzhnyĭ-Verbovetzkiĭ, D.: Matrix-J-unitary non-commutative rational formal power series. In: Alpay, D., Gohberg, I. (eds.) The State Space Method Generalizations and Applications. Operator Theory: Advances and Applications, vol. 6. Birkhäuser, Basel (2005). https://doi.org/10.1007/3-7643-7431-4_2
Alpay, D., Gohberg, I.: Unitary Rational Matrix Functions. Operator Theory: Advances and Applications, vol. 33. Birkhäuser Verlag, Basel (1988). https://doi.org/10.1007/978-3-0348-5469-6_5
Anderson, B.D.O., Newcomb, R.W.: Impedance synthesis via state-space techniques. Proc. Inst. Electr. Eng. 115(7), 928–936 (1968). https://doi.org/10.1049/piee.1968.0170
Anderson, W.N., Jr.: Shorted operators. SIAM J. Appl. Math. 20, 520–525 (1971). https://doi.org/10.1137/0120053
Anderson, W.N., Jr., Trapp, G.E.: Shorted operators. II. SIAM J. Appl. Math. 28, 60–71 (1975). https://doi.org/10.1137/0128007
Ando, T.: Schur complements and matrix inequalities: operator-theoretical approach. In: Zhang, F. (ed.) The Schur Complement and Its Applications, Numerical Methods and Algorithms, vol. 4, pp. 137–162. Springer, Berlin (2005). https://doi.org/10.1007/0-387-24273-2_6
Arias, M., Corach, G., Maestripieri, A.: Range additivity, shorted operator and the Sherman–Morrison–Woodbury formula. Linear Algebra Appl. 467, 86–99 (2015). https://doi.org/10.1016/j.laa.2014.11.001
Ball, J.A.: Multidimensional circuit synthesis and multivariable dilation theory. Multidimens. Syst. Signal Process. 22, 27–44 (2011). https://doi.org/10.1007/s11045-010-0123-2
Ball, J., Groenwald, G., Malkorn, T.: Structured noncommutative multidimensional linear systems. SIAM J. Control Optim. 44(4), 1474–1528 (2005). https://doi.org/10.1137/S0363012904443750
Bart, H., Gohberg, I., Kaashoek, M.A., Ran, A.C.M.: Factorization of Matrix and Operator Functions: The State Space Method. Operator Theory: Advances and Applications, vol. 178. Birkhäuser Verlag, Basel (2008). https://doi.org/10.1007/978-3-7643-8268-1
Bart, H., Gohberg, I., Kaashoek, M.A.: Minimal Factorization of Matrix and Operator Functions: The State Space Method. Operator Theory: Advances and Applications, vol. 1. Birkhäuser Verlag, Basel-Boston, Mass (1979). https://doi.org/10.1007/978-3-0348-6293-6
Bessmertnyĭ, M.F.: Functions of Several Variables in the Theory of Finite Linear Structures. Kharkov University, Kharkov (1982). (Ph. D. Thesis)
Bessmertnyĭ, M.F.: On realizations of rational matrix functions of several complex variables. In: Alpay, D., Gohberg, I., Vinnikov, V. (eds.) Interpolation Theory, Systems Theory and Related Topics. Operator Theory: Advances and Applications, vol. 134, pp. 157–185. Birkhäuser Verlag, Basel (2002)
Bessmertnyĭ, M.F.: Functions of several variables in the theory of finite linear structures Part I: analysis. In: Alpay, D., Vinnikov, V. (eds.) Operator Theory, Systems Theory and Scattering Theory: Multidimensional Generalizations. Operator Theory: Advances and Applications, vol. 157, pp. 91–106. Birkhäuser Verlag, Basel (2005). https://doi.org/10.1007/3-7643-7303-2_3
Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications. Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511760860
Bose, N., Newcomb, R.: Tellegens theorem and multivariable realizability theory. Int. J. Electron. 36(3), 417–425 (1974). https://doi.org/10.1080/00207217408900421
Bott, R., Duffin, R.J.: Impedance synthesis without use of transformers. J. Appl. Phys. 20, 816 (1949). https://doi.org/10.1063/1.1698532
Bott, R., Duffin, R.J.: The algebra of networks. Trans. Am. Math. Soc. 74, 99–109 (1953). https://doi.org/10.1090/S0002-9947-1953-0056573-X
Bultheel, A., Van Barel, M.: Padé techniques for model reduction in linear system theory: a survey. J. Comput. Appl. Math. (1986). https://doi.org/10.1016/0377-0427(86)90076-2
Cassier, M., Welters, A., Milton, G.W.: Analyticity of the Dirichlet-to-Neumann map for the time-harmonic Maxwells equations. In: Milton, G.W. (ed.) Extending the Theory of Composites to Other Areas of Science Chap. 4, pp. 95–121. Milton-Patton Publishers, Salt Lake City (2016)
Cassier, M., Welters, A., Milton, G.W.: A rigorous approach to the field recursion method for two-component composites with isotropic phases. In: Milton, G.W. (ed.) Extending the Theory of Composites to Other Areas of Science Chap. 10, pp. 287–307. Milton-Patton Publishers, Salt Lake City (2016)
Cohn, P., Reutenauer, C.: A normal form in free fields. Can. J. Math. 46(3), 517–531 (1994). https://doi.org/10.4153/CJM-1994-027-4
Cohn, P., Reutenauer, C.: On the construction of the free field. Int. J. Algebra Comput. 9(3), 307–323 (1999). https://doi.org/10.1142/S0218196799000205
Doan, M., Nguyen, T., Lin, Z., Xu, L.: Notes on minimal realizations of multidimensional systems. multidimens. Syst. Signal Process. 26, 519–553 (2015). https://doi.org/10.1007/s11045-014-0297-0
Duffin, R.J.: An analysis of the Wang algebra of networks. Trans. Am. Math. Soc. 93, 114–131 (1959). https://doi.org/10.1090/S0002-9947-1959-0109161-6
Duffin, R.J.: Elementary operations which generate network matrices. Proc. Am. Math. Soc. 6, 335–339 (1955). https://doi.org/10.1090/S0002-9939-1955-0072725-4
Duffin, R.J., Morley, T.D.: Wang algebra and matroids. IEEE Trans. Circuits Syst. 25, 755–762 (1978). https://doi.org/10.1109/TCS.1978.1084531
Duffin, R. J., Hazony, D., Morrison, N.: The gyration operator in network theory. Scientific Report No. 7, AF 19 (628) 1699, CRST I Sills Bld 5285 Port Royal Road, Springfield, Virginia (1965). https://doi.org/10.21236/ad0616329
Duffin, R.J., Hazony, D., Morrison, N.: Network synthesis through hybrid matrices. SIAM J. Appl. Math. 14, 390–413 (1966). https://doi.org/10.1137/0114032
Duffin, R.J., Hazony, D.: The degree of a rational matrix function. SIAM J. 11(3), 645–658 (1963). https://doi.org/10.1137/0111049
Efimov, A.V., Potapov, V.P.: J-expanding matrix functions and their role in the analytical theory of electrical circuits. Russ. Math. Surv. 28(1), 69–140 (1973). https://doi.org/10.1070/rm1973v028n01abeh001397
Fliess, M.: Matrices de Hankel. J. Math. Pures Appl. 53, 197–222 (1974)
Fornasini, E., Marchesini, G.: Doubly-indexed dynamical systems: state-space models and structural properties. Math. Syst. Theory 12, 59–72 (1978). https://doi.org/10.1007/BF01776566
Fornasini, E., Marchesini, G.: State-space realization theory of two-dimensional filters. IEEE Trans. Autom. Control 21(4), 484–492 (1976). https://doi.org/10.1109/TAC.1976.1101305
Galkowski, K.: Minimal state-space realization for a class of linear, discrete, \(n\)D, SISO systems. Int. J. Control 74(13), 1279–1294 (2001). https://doi.org/10.1080/00207170110065901
Garcia, S., Prodan, E., Putinar, M.: Mathematical and physical aspects of complex symmetric operators. J. Phys. A Math. Theor. 47(35), 1–54 (2014). https://doi.org/10.1088/1751-8113/47/35/353001
Gilbert, E.: Controllability and observability in multivariable control systems. SIAM J. Control Ser. A (1963). https://doi.org/10.1137/0301009
Givone, D.D., Roesser, R.P.: Multidimensional linear iterative circuits-general properties. IEEE Trans. Comput. C–21(10), 1067–1073 (1972). https://doi.org/10.1109/T-C.1972.223453
Givone, D.D., Roesser, R.P.: Minimization of multidimensional linear iterative circuits. IEEE Trans. Comput. 22(7), 673–678 (1973). https://doi.org/10.1109/TC.1973.5009134
Grabovsky, Y.: Composite Materials: Mathematical Theory and Exact Relations. IOP Publishing, Bristol (2016). https://doi.org/10.1088/978-0-7503-1048-2
Helton, J.: The characteristic function of operator theory and electrical network realization. Indiana Univ. Math. J. 22(5), 403–414 (1973). https://doi.org/10.1512/iumj.1973.22.22035
Helton, J.: Systems with infinite-dimensional state-space: the Hilbert space approach. Proc. IEEE 64(1), 145–160 (1976). https://doi.org/10.1109/PROC.1976.10076
Helton, J.W., McCullough, S.A., Vinnikov, V.: Noncommutative convexity arises from linear matrix inequalities. J. Funct. Anal. 240, 105–191 (2006). https://doi.org/10.1016/j.jfa.2006.03.018
Helton, J., Mai, T., Speicher, R.: Applications of realizations (aka linearizations) to free probability. J. Funct. Anal. 274(1), 1–79 (2018). https://doi.org/10.1016/j.jfa.2017.10.003
Ho, B., Kalman, R.: Effective construction of linear state-variable models from input/output functions. Automatisierungstechnik 14(1–12), 545–548 (1966). https://doi.org/10.1524/auto.1966.14.112.545
Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991). https://doi.org/10.1017/CBO9780511840371
Horn, R., Johnson, C.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139020411
Jackson, A.: Interview with Raoul Bott. Not. Am. Math. Soc. 48, 374–382 (2001)
Kalman, R.: Irreducible realizations and the degree of a rational matrix. J. Soc. Ind. Appl. Math. (1965). https://doi.org/10.1137/0113034
Kalman, R.: Mathematical description of linear dynamical systems. SIAM. J. Control Ser. A (1963). https://doi.org/10.1137/0301010
Kalyuzhnyĭ-Verbovetzkiĭ, D.: On the Bessmertnyĭ class of homogeneous positive holomorphic functions of several variables. In: Ball, J.A., Helton, J.W., Klaus, M., Rodman, L. (eds.) Current Trends in Operator Theory and Its Applications. Operator Theory: Advances and Applications, vol. 149, pp. 255–289. Birkhäuser-Verlag, Basel. (2004)
Katsnelson, V.E.: Right and Left Joint System Representation of a Rational Matrix Function General Position (System Representation Theory for Dummies). Operator Theory: Advances and Applications, vol. 123, pp. 337–400. Birkhäuser-Verlag, Basel (2001). https://doi.org/10.1007/978-3-0348-8247-7_15
Klep, I., Pascoe, J., Volčič, J.: Regular and positive noncommutative rational functions. J. Lond. Math. Soc. 95(2), 613–632 (2017). https://doi.org/10.1112/jlms.12030
Krein, M.G.: Theory of self-adjoint extensions of semi-bounded Hermitian operators (in Russian). Rec. Math. [Mat. Sbornik] N.S. 20(62), 431–495 (1947)
Krein, M.G., Ovcharenko, I.E.: On the theory of inverse problems for the canonical differential equation. In: Gohberg, I., Sakhnovich, L.A. (eds.) Matrix and Operator Valued Functions. perator Theory: Advances and Applications, vol. 72, pp. 162–170. Birkhäuser-Verlag, Basel. (1994)
Kung, S., Lévy, B., Morf, M., Kailath, T.: New results in \(2\)-D systems theory, Part I: \(2\)-D polynomial matrices, factorization and coprimeness, Part II: \(2\)-D state-space models. In: Realization and the Notions of Controllability, Observability and Minimality, Proc. of IEEE, Vol. 65, No. 6. (1977)
Livšic, M.S.: Operators, Oscillations, Waves (Open Systems). American Mathematical Society, Translated from Russian by Scripta Technica, Ltd., English translation edited by R. Herden; Translations of Mathematical Monographs, Vol. 34 (1973)
Luenberger, D.: Dynamic equations in descriptor form. IEEE Trans. Autom. Control (1977). https://doi.org/10.1109/TAC.1977.1101502
Luenberger, D.: Time invariant descriptor systems. Automatica 14, 5 (1978). https://doi.org/10.1016/0005-1098(78)90006-7
McMillan, B.: Introduction to formal realizability theory-II. Bell Syst. Tech. J. 31(3), 541–600 (1952). https://doi.org/10.1002/j.1538-7305.1952.tb01396.x
Milton, G.W.: Multicomponent composites, electrical networks and new types of continued fractions I. Commun. Math. Phys. 111, 281–327 (1987). https://doi.org/10.1007/BF01217763
Milton, G.W.: Multicomponent composites, electrical networks and new types of continued fractions II. Commun. Math. Phys. 111, 329–372 (1987). https://doi.org/10.1007/BF01238903
Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/CBO9780511613357
Milton, G.W. (ed.): Extending the Theory of Composites to Other Areas of Science. Milton-Patton Publishers, Salt Lake City (2016). https://doi.org/10.1115/1.4035525
Milton, G.W.: Composites and the associated abstract theory. In: Milton, G.W. (ed.) Extending the Theory of Composites to Other Areas of Science. Chap. 2, pp. 47–76. Milton-Patton Publishers, Salt Lake City (2016)
Milton, G.W.: Superfunctions and the algebra of subspace collections and their association with rational functions of several complex variables. In: Milton, G.W. (ed.) Extending the Theory of Composites to Other Areas of Science. Chap. 7, pp. 179–234. Milton-Patton Publishers, Salt Lake City (2016)
Mitra, S., Bhimasankaram, P., Malik, S.: Matrix Partial Orders, Shorted Operators and Applications. World Scientific Publishing, Singapore (2010). https://doi.org/10.1142/7170
Nishio, K., Ando, T.: Characterizations of operations derived from network connections. J. Math. Anal. 53, 539–549 (1976). https://doi.org/10.1016/0022-247X(76)90090-1
Pekarev, E.L.: A note on characterization of the shorted operation. Electron. J. Linear Algebra 27, 155–161 (2014). https://doi.org/10.13001/1081-3810.1609
Reutenauer, C.: Michel Fliess and non-commutative formal power series. Int. J. Control 81(3), 338–343 (2008). https://doi.org/10.1080/00207170701556898
Roesser, R.P.: A Discrete state-space model for linear image processing. IEEE Trans. Autom. Control 20(1), 1–10 (1975). https://doi.org/10.1109/TAC.1975.1100844
Schumacher, J.M.: Linear System Representations. Three Decades of Mathematical System Theory, pp. 382–408. Springer, Berlin, Heidelberg (1989). https://doi.org/10.1007/BFb0008470
Sontag, E.: On first-order equations for multidimensional filters. IEEE Trans. Acoust. Speech Signal Process. 26(5), 480–482 (1978). https://doi.org/10.1109/TASSP.1978.1163124
Stefan, A.: Schur complement algebra and operations with applications in multivariate functions, realizability, and representations. M.S. Thesis, Florida Institute of Technology (2021). https://repository.lib.fit.edu/handle/11141/3260
Stefan, A., Welters, A.: A short proof of the symmetric determinantal representation of polynomials. Linear Algebra Appl. 627, 80–93 (2021). https://doi.org/10.1016/j.laa.2021.06.007
Tellegen, B.D.H.: Synthesis of passive resistanceless four-poles that may violate the reciprocity condition. Philips Res. Rep. 3, 321–337 (1948)
Tsatsomeros, M.J.: Principal pivot transforms: properties and applications. Linear Algebra Appl. 307, 151–165 (2000). https://doi.org/10.1016/S0024-3795(99)00281-5
Tucker, A.W.: A combinatorial equivalence of matrices. In: Bellman, R., Hall, M., Jr. (eds.) Combinatorial Analysis, pp. 129–140. American Mathematical Society, Providence (1960). https://doi.org/10.1090/psapm/010
Xu, L., Fan, H., Lin, Z., Bose, N.: A direct-construction approach to multidimensional realization and LFR uncertainty modeling. Multidimens. Syst. Signal Process. 19, 323–359 (2008). https://doi.org/10.1007/s11045-008-0057-0
Zhang, F. (ed.): The Schur Complement and Its Applications. Springer, Berlin (2005). https://doi.org/10.1007/b105056