Extension of FRAPCON-xt to hydride radial reorientation in dry storage
Tài liệu tham khảo
Adams, B.M., Ebeida, M.S., Eldred, M.S., Jakeman, J.D., Swiler, L.P., Stephens, J.A., Vigil, D.M., Wildey, T.M., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P., Hu, K.T., Bauman, L.E., Hough, P.D., 2014. Dakota, A multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.2 reference manual. SAND2014-5015.
Alam, 2008, Cladding tube deformation test for stress reorientation of hydrides, J. ASTM Int., 5, 1, 10.1520/JAI101110
Arkoma, A., 2014. Long term behaviour of spent fuel in dry cask storage: Modelling of cladding creep. VTT-R-00812-14.
Billone, 2013, Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions, J. Nucl. Mater., 433, 431, 10.1016/j.jnucmat.2012.10.002
Billone, M.C., Burtseva, T.A., Martin-Rengel, M.A., 2015. Effects of lower drying-storage temperatures on the DBTT on high burnup PWR cladding. FCRD-UFD-2015-000008.
Billone, M.C., Burtseva, T.A., 2016. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding. FCRD-UFD-2016-000065.
Bouffioux, P., 2002. Réorientation des hydrures – Synthèse des résultats acquis pour les gaines en Zircaloy-4 AFA-2G, EDF Report, HT25-C2002-191/PB.
Daum, 2006, Radial-hydride Embrittlement of High-burnup Zircaloy-4 fuel cladding, J. Nucl. Sci. Technol., 43, 1054, 10.1080/18811248.2006.9711195
Desquines, 2014, Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding, J. Nucl. Mater., 453, 131, 10.1016/j.jnucmat.2014.06.049
Ells, 1970, The stress orientation of hydride in zirconium alloys, J. Nucl. Mater., 35, 306, 10.1016/0022-3115(70)90214-X
EPRI, 2015. Session 4: Technical Issues Cladding. Presented by Albert Machiels at 2015 Division of Spent Fuel Management (DSF) Regulatory Conference (REG CON 2015), Washington, D.C. November 18-19, 2015. Available at https://www.nrc.gov/public-involve/conference-symposia/dsfm/2015/dsfm-2015-albert-machiels.pdf.
Feria, 2015, On the way to enabling FRAPCON-3 to model spent fuel under dry storage conditions: the thermal evolution, Ann. Nucl. Energy, 85, 995, 10.1016/j.anucene.2015.07.017
Feria, 2017, Application of the BEPU methodology to assess fuel performance in dry storage, Ann. Nucl. Energy, 99, 240, 10.1016/j.anucene.2016.08.029
Feria, 2018, Effect of the oxidation front penetration on in-clad hydrogen migration, J. Nucl. Mater., 500, 349, 10.1016/j.jnucmat.2018.01.011
Feria, 2020, Methodology for a realistically conservative characterization of spent fuel in dry storage, Ann. Nucl. Energy, 140, 10.1016/j.anucene.2019.107148
Geelhood, K.J., Luscher, W.G., Raynaud, P.A., Porter, I.E., 2015. FRAPCON-4.0: a computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup. PNNL-19418, Vol.1 Rev.2.
Hanson, B., Alsaed, H., Stockman, C., Enos, D., Meyer, R., Sorenson, K., 2012. Gap analysis to support extended storage of used nuclear fuel. PNNL-20509.
Herranz, 2015, CFD analysis of a cask for spent fuel dry storage: model fundamentals and sensitivity studies, Ann. Nucl. Energy, 76, 54, 10.1016/j.anucene.2014.09.032
Herranz, L.E., Penalva, J., Feria, F., 2018. Modeling fuel temperature in dry storage: The key role of CFD Analyses. NUTHOS-12.
IAEA, 2015. Spent Fuel Performance Assessment and Research Final Report of a Coordinated Research Project on Spent Fuel Performance Assessment and Research (SPAR-III) 2009–2014. IAEA-TECDOC-1771.
Ito, 2007, Effect of Nb addition on the terminal solid solubility of hydrogen for Zr and Zircaloy-4, J. Alloys Compd., 446–447, 451, 10.1016/j.jallcom.2007.01.084
Kammenzind, B., Franklin, D.G., Peters, H.R., Duffin, W.J., 1997. Hydrogen pickup and redistribution in alpha-annealed Zircaloy-4, in: 11th International Symposium on Zirconium in the Nuclear Industry, pp. 338-369. ASTM STP1295.
Kim, 2015, A study on hydride reorientation of Zircaloy-4 cladding tube under stress, J. Nucl. Mater., 456, 246, 10.1016/j.jnucmat.2014.09.032
2020, Nuclear Eng. Technol.
Kolesnik, 2018, Modeling of hydrogen behavior in spent fuel claddings during dry Storage, J. Nucl. Mater., 508, 567, 10.1016/j.jnucmat.2018.06.012
Liu, W., Rashid, J., Machiels, A., 2016. A hydride reorientation model for irradiated zirconium alloy cladding. Top Fuel meeting.
Massih, 2009, Stress orientation of second-phase in alloys: hydrides in zirconium alloys, Comput. Mater. Sci., 46, 1091, 10.1016/j.commatsci.2009.05.025
McMinn, 2000, The terminal solid solubility of hydrogen in zirconium alloys, 173
NEA, 2012. Nuclear fuel safety criteria technical review. ISBN 978-92-64-99178-1.
NEI, 2012, Fuel review: design data, Nuclear Eng. Int., 57, 42
NRC, 2003
Puls, 1986, Effects of stress on hydride reorientation in zirconium alloys, 426
Rashid, J.Y.R., Machiels, A.J., 2005. Hydride precipitation in spent fuel cladding during storage. The 10th Int. Conf. On Environmental Remediation and Radioactive Waste Management, ICEM05, paper 1038.
Raynaud, 2015, Cladding stress during extended storage of high burnup spent nuclear fuel, J. Nucl. Mater., 464, 304, 10.1016/j.jnucmat.2015.05.008
Richmond, 2018, FRAPCON analysis of cladding performance during dry storage operations, Nuclear Eng. Technol., 50, 306, 10.1016/j.net.2018.01.003
Rossiter, 2011, Development of the ENIGMA fuel performance code for whole core analysis and dry storage assessment, Nuclear Eng. Technol., 43, 489, 10.5516/NET.2011.43.6.489
Sharma, 2018, Effect of radial hydride fraction on fracture toughness of CWSR Zr-2.5%Nb pressure tube material between ambient and 300°C temperatures, J. Nucl. Mater., 508, 546, 10.1016/j.jnucmat.2018.06.003
Sonnenburg, H.G., Boldt, F., 2017. Brennstabverhalten im Normalbetrieb, bei Störfällen und bei Langzeitlagerung. GRS-Bericht: GRS – 464, ISBN 978-3-946607-47-2.
Stafford, 2015, Multidimensional simulations of hydrides during fuel rod lifecycle, J. Nucl. Mater., 466, 362, 10.1016/j.jnucmat.2015.06.037
Racine, 2005, Experimental investigation of strain, damage and failure of hydrided zircaloy-4 with various hydride orientations
Tupin, 2015, Mechanism of corrosion of zirconium hydride and impact of precipitated hydrides on the Zirclaoy-4 corrosion behavior, Corros. Sci., 98, 478, 10.1016/j.corsci.2015.05.058
Valance, 2011, Statistical analysis of hydride reorientation properties in irradiated zircaloy-2, J. ASTM Int., 8, 1, 10.1520/JAI102957
Wang, J.-A., Wang, H., 2017. Mechanical fatigue testing of high-burnup fuel for transportation applications. NUREG/CR-7198, Rev. 1, ORNL/TM-2016/689.