Extending involutions on Frobenius algebras
Tóm tắt
Let A be a central simple algebra of degree n over a field of characteristic different from 2 and let B ? A be a maximal commutative subalgebra. We show that if there is an involution on A that preserves B and such that the socle of each local component of B is a homogeneous C
2
-module for this action, then B is a Frobenius algebra. For a fixed commutative Frobenius algebra B of finite dimension n equipped with an involution σ, we characterize the central simple algebras A of degree n that contain B and carry involutions extending σ.