Extending Sledgehammer with SMT Solvers

Jasmin Christian Blanchette1, Sascha Böhme1, Lawrence C. Paulson2
1Institut für Informatik, Technische Universität München, Munich, Germany
2Computer Laboratory, University of Cambridge, Cambridge, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahrendt, W., Beckert, B., Hähnle, R., Menzel, W., Reif, W., Schellhorn, G., Schmitt, P.H.: Integrating automated and interactive theorem proving. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction—A Basis for Applications, Systems and Implementation Techniques, vol. II, pp. 97–116. Kluwer (1998)

Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Applied Logic, vol. 27. Springer (2002)

Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud, J.P., Shao, Z. (eds.) Certified Programs and Proofs (CPP 2011), LNCS, vol. 7086, pp. 135–150. Springer (2011)

Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard—Version 2.0. In: Gupta, A., Kroening, D. (eds.) Satisfiability Modulo Theories (SMT) (2010)

Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) Computer Aided Verification (CAV 2007), LNCS, vol. 4590, pp. 298–302. Springer (2007)

Barsotti, D., Nieto, L.P., Tiu, A.: Verification of clock synchronization algorithms: experiments on a combination of deductive tools. Form. Asp. Comput. 19(3), 321–341 (2007)

Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. J. Funct. Program. 13(2), 261–293 (2003)

Besson, F., Fontaine, P., Théry, L.: A flexible proof format for SMT: a proposal. In: Fontaine, P., Stump, A. (eds.) Proof Exchange for Theorem Proving (PxTP-2011), pp. 15–26 (2011)

Bezem, M., Hendriks, D., de Nivelle, H.: Automatic proof construction in type using resolution. J. Autom. Reasoning 29(3–4), 253–275 (2002)

Blanchette, J.C.: Automatic Proofs and Refutations for Higher-Order Logic. Ph.D. thesis, Dept. of Informatics, T.U. München (2012)

Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) Conference on Automated Deduction (CADE-23), LNAI, vol. 6803, pp. 207–221. Springer (2011)

Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. In: Piterman, N., Smolka, S. (eds.) Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2013), LNCS, vol. 7795. Springer (2013)

Blanchette, J.C., Popescu, A., Wand, D., Weidenbach, C.: More SPASS with Isabelle—Superposition with hard sorts and configurable simplification. In: Beringer, L., Felty, A. (eds.) Interactive Theorem Proving (ITP 2012), no. 7406 in LNCS, pp. 345–360. Springer (2012)

Böhme, S.: Proving Theorems of Higher-Order Logic with SMT Solvers. Ph.D. thesis, Dept. of Informatics, T.U. München (2012)

Böhme, S., Fox, A.C.J., Sewell, T., Weber, T.: Reconstruction of Z3’s bit-vector proofs in HOL4 and Isabelle/HOL. In: Jouannaud, J.P., Shao, Z. (eds.) Certified Programs and Proofs (CPP 2011), LNCS, vol. 7086, pp. 183–198. Springer (2011)

Böhme, S., Moskal, M., Schulte, W., Wolff, B.: HOL-Boogie—an interactive prover-backend for the verifying C compiler. J. Autom. Reasoning 44(1–2), 111–144 (2010)

Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R. (eds.) International Joint Conference on Automated Reasoning (IJCAR 2010), LNAI, vol. 6173, pp. 107–121. Springer (2010)

Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann, M., Paulson, L. (eds.) Interactive Theorem Proving (ITP 2010), LNCS, vol. 6172, pp. 179–194. Springer (2010)

Böhme, S., Weber, T.: Designing proof formats: a user’s perspective. In: Fontaine, P., Stump, A. (eds.) Proof Exchange for Theorem Proving (PxTP-2011), pp. 27–32 (2011)

Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard, M.C.: Using first-order theorem provers in the Jahob data structure verification system. In: Cook, B., Podelski, A. (eds.) Verification, Model Checking, and Abstract Interpretation (VMCAI 2007), LNCS, vol. 4349, pp. 74–88. Springer (2007)

Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. Form. Asp. Comput. 20, 379–405 (2008)

Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2009), LNCS, vol. 5674, pp. 23–42. Springer (2009)

Dahn, B., Gehne, J., Honigmann, T., Wolf, A.: Integration of automated and interactive theorem proving in ILF. In: McCune, W. (ed.) Conference on Automated Deduction (CADE-14), LNCS, vol. 1249, pp. 57–60. Springer (1997)

Dutertre, B., de Moura, L.: The Yices SMT solver. Available http://yices.csl.sri.com/tool-paper.pdf (2006). Accessed 21 Feb 2013

Erkök, L., Matthews, J.: Using Yices as an automated solver in Isabelle/HOL. In: Rushby, J., Shankar, N. (eds.) Automated Formal Methods (AFM08), pp. 3–13 (2008)

Fontaine, P., Marion, J.Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + automation + soundness: towards combining SMT solvers and interactive proof assistants. In: Hermanns, H., Palsberg, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2006), LNCS, vol. 3920, pp. 167–181. Springer (2006)

Foster, S., Struth, G.: Integrating an automated theorem prover into Agda. In: Bobaru, M.G., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NASA Formal Methods (NFM 2011), LNCS, vol. 6617, pp. 116–130 (2011)

Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of Computation, LNCS, vol. 78. Springer (1979)

Guttmann, W., Struth, G., Weber, T.: Automating algebraic methods in Isabelle. In: Qin, S., Qiu, Z. (eds.) International Conference on Formal Engineering Methods (ICFEM 2011), LNCS, vol. 6991, pp. 617–632. Springer (2011)

Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) Conference on Automated Deduction (CADE-23), LNAI, vol. 6803, pp. 299–314. Springer (2011)

Hughes, R.J.M.: Super-combinators: A new implementation method for applicative languages. In: LISP and Functional Programming (LFP 1982), pp. 1–10. ACM Press (1982)

Hurd, J.: Integrating Gandalf and HOL. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) Theorem Proving in Higher Order Logics (TPHOLs ’99), LNCS, vol. 1690, pp. 311–321 (1999)

Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer, M., Di Vito, B., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in Higher Order Logics, no. CP-2003-212448 in NASA Technical Reports, pp. 56–68 (2003)

Klein, G., Nipkow, T., Paulson, L. (eds.): The Archive of Formal Proofs. http://afp.sf.net/ . Accessed 21 Feb 2013

McCune, W., Shumsky, O.: System description: IVY. In: McAllester, D. (ed.) Conference on Automated Deduction (CADE-17), LNAI, vol. 1831, pp. 401–405. Springer (2000)

McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: a case study combining HOL-Light and CVC Lite. Electr. Notes Theor. Comput. Sci. 144(2), 43–51 (2006)

Meier, A.: Tramp: Transformation of machine-found proofs into natural deduction proofs at the assertion level (system description). In: McAllester, D. (ed.) Conference on Automated Deduction (CADE-17), LNAI, vol. 1831, pp. 460–464. Springer (2000)

Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reasoning 40(1), 35–60 (2008)

Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. Journal of Applied Logic 7(1), 41–57 (2009)

Moskal, M.: Programming with triggers. In: Dutertre, B., Strichman, O. (eds.) Satisfiability Modulo Theories (SMT 2009) (2009)

de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2008), LNCS, vol. 4963, pp. 337–340. Springer (2008)

Nipkow, T.: Re: [isabelle] A beginner’s questionu [sic]. Archived https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2010-November/msg00097.html (2010). Accessed 21 Feb 2013

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 335–367. Elsevier (2001)

Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E., Schulz, S., (eds.) International Workshop on the Implementation of Logics (IWIL-2010) (2010)

Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2007), LNCS, vol. 4732, pp. 232–245 (2007)

Ranise, S., Tinelli, C.: The SMT-LIB standard: Version 1.2. http://smtlib.cs.uiowa.edu/papers/format-v1.2-r06.08.30.pdf (2006). Accessed 21 Feb 2013

Reif, W., Schellhorn, G.: Theorem proving in large theories. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction—A Basis for Applications, vol. III: Applications, pp. 225–241. Kluwer (1998)

Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Commun. 15(2–3), 91–110 (2002)

Rinard, M.C.: Integrated reasoning and proof choice point selection in the Jahob system—mechanisms for program survival. In: Schmidt, R.A. (ed.) Conference on Automated Deduction (CADE-22), LNCS, vol. 5663, pp. 1–16. Springer (2009)

Rudnicki, P., Urban, J.: Escape to ATP for Mizar. In: Fontaine, P., Stump, A. (eds.) Proof Exchange for Theorem Proving (PxTP-2011) (2011)

Rushby, J.M.: Tutorial: automated formal methods with PVS, SAL, and Yices. In: Hung, D.V., Pandya, P. (eds.) Software Engineering and Formal Methods (SEFM 2006), p. 262. IEEE (2006)

Schropp, A.: Instantiating Deeply Embedded Many-sorted Theories into HOL Types in Isabelle. M.Sc. thesis, Dept. of Informatics, T.U. München (2012)

Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) International Joint Conference on Automated Reasoning (IJCAR 2004), LNAI, vol. 3097, pp. 223–228. Springer (2004)

Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., Pollet, M.: Proof development with Ω mega: the irrationality of $\sqrt2$ . In: Kamareddine, F. (ed.) Thirty Five Years of Automating Mathematics, Applied Logic, vol. 28, pp. 271–314. Springer (2003)

Sutcliffe, G.: System description: SystemOnTPTP. In: McAllester, D. (ed.) Conference on Automated Deduction (CADE-17), LNAI, vol. 1831, pp. 406–410. Springer (2000)

Sutcliffe, G.: The TPTP problem library and associated infrastructure—the FOF and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

Wampler-Doty, M.: A complete proof of the Robbins conjecture. In: G. Klein, T. Nipkow, L. Paulson (eds.) The Archive of Formal Proofs. Available http://afp.sf.net/entries/Robbins-Conjecture.shtml (2010). Accessed 21 Feb 2013

Weber, T.: SMT solvers: new oracles for the HOL theorem prover. J. Softw. Tools Technol. Transfer 13(5), 419–429 (2011)

Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1965–2013. Elsevier (2001)

Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L., Felty, A. (eds.) Theorem Proving in Higher Order Logics (TPHOLs ’97), LNCS, vol. 1275, pp. 307–322 (1997)

Wenzel, M.: Parallel proof checking in Isabelle/Isar. In: Dos Reis, G., Théry, L. (eds.) Programming Languages for Mechanized Mathematics Systems (PLMMS 2009). ACM Digital Library (2009)