Extending Lipschitz maps into C(K)-spaces

N. J. Kalton1
1Department of Mathematics, University of Missouri-Columbia, Columbia, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000.

K. Borsuk, Über Isomorphic der Funktionalraüme, Bulletin of the Institute Ac. Pol. Sci. A113 (1933), 1–10.

J. A. C. Burlak, R. A. Rankin and A. P. Robertson, The packing of spheres in the space I p, Proceedings of the Glasgow Mathematical Association 4 (1958), 22–25.

J. Elton and E. Odell, The unit ball of every infinite-dimensional normed linear space contains a (1 + ε)-separated sequence, Colloquium Mathematicum 44 (1981), 105–109.

R. Espínola and G. López, Extension of compact mappings and ℵ 0-hyperconvexity, Nonlinear Analysis 49 (2002), 1127–1135.

V. Klee, Some characterizations of convex polyhedra, Acta Mathematica 102 (1959), 79–107.

C. A. Kottman, Packing and reflexivity in Banach spaces, Transactions of the American Mathematical Society 150 (1970), 565–576.

A. Kryczka and S. Prus, Separated sequences in nonreflexive Banach spaces, Proceedings of the American Mathematical Society 129 (2001), 155–163.

G. Lancien and B. Randrianantoanina, On the extension of Hölder maps with values in spaces of continuous functions, Israel Journal of Mathematics 147 (2005), 75–92.

J. Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Mathematical Journal 11 (1964), 263–287.

J. Lindenstrauss, Extension of compact operators, Memoirs of the American Mathematical Society 48 (1948), 112.

J. Melleray, On the geometry of Urysohn’s universal metric space, Topology and its Applications 154 (2007), 384–403.

A. A. Miljutin, Isomorphisms of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teoriya Funkciĭ Funkcional. Anal. i Priložen. Vyp. 2 (1966), 150–156 (1 foldout) (Russian).

A. Naor, A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between L p spaces, Mathematika 48 (2001), 253–271 (2003).