Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cheng, 2000, Effects of electric fields on the bending behavior of PZT-5Z piezoelectric laminates, Smart Mater. Struct., 9, 824, 10.1088/0964-1726/9/6/312
Kuna, 2010, Fracture mechanics of piezoelectric materials—where are we right now?, Eng. Fract. Mech., 77, 309, 10.1016/j.engfracmech.2009.03.016
Parton, 1976, Fracture mechanics of piezoelectric materials, Acta Astronaut., 3, 671, 10.1016/0094-5765(76)90105-3
Pak, 1990, Crack extension force in a piezoelectric material, J. Appl. Mech., 57, 647, 10.1115/1.2897071
Sosa, 1990, Three-dimensional eigenfunction analysis of a crack in a piezoelectric material, Int. J. Solids Struct., 26, 1, 10.1016/0020-7683(90)90090-I
McMeeking, 1990, A J-integral for the analysis of electrically induced mechanical stress at cracks in elastic dielectrics, Internat. J. Engrg. Sci., 28, 605, 10.1016/0020-7225(90)90089-2
Pak, 1992, Linear electro-elastic fracture mechanics of piezoelectric materials, Int. J. Fract., 54, 79, 10.1007/BF00040857
Suo, 1992, Fracture mechanics for piezoelectric ceramics, J. Mech. Phys. Solids, 40, 739, 10.1016/0022-5096(92)90002-J
Chen, 1999, Fundamental solution for a penny-shaped crack in a piezoelectric medium, J. Mech. Phys. Solids, 47, 1459, 10.1016/S0022-5096(98)00114-8
Park, 1995, Fracture criteria for piezoelectric ceramics, J. Am. Ceram. Soc., 78, 1475, 10.1111/j.1151-2916.1995.tb08840.x
Xu, 2000, A theoretical study of branched cracks in piezoelectrics, Acta Mater., 48, 1865, 10.1016/S1359-6454(99)00469-3
Kumar, 1996, Crack propagation in piezoelectric materials under combined mechanical and electric loadings, Acta Mater., 44, 173, 10.1016/1359-6454(95)00175-3
Kumar, 1997, Energy release rate and crack propagation in piezoelectric materials, Part II, combined mechanical and electric loads, Acta Mater., 45, 849, 10.1016/S1359-6454(96)00175-9
Abendroth, 2002, Finite element computation of the electromechanical J-Integral for 2-D and 3-D crack analysis, Int. J. Fract., 114, 359, 10.1023/A:1015725725879
Enderlein, 2005, Finite element techniques for dynamic crack analysis in piezoelectrics, Int. J. Fract., 134, 191, 10.1007/s10704-005-0522-9
Gruebner, 2003, Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium, Eng. Fract. Mech., 70, 1399, 10.1016/S0013-7944(02)00117-0
Janski, 2010, Adaptive finite element computation of dielectric and mechanical intensity factors in piezoelectrics with impermeable cracks, Internat. J. Numer. Methods Engrg., 81, 1492, 10.1002/nme.2742
Kuna, 1998, Finite element analyses of crack problems in piezoelectric structures, Comput. Mater. Sci., 13, 67, 10.1016/S0927-0256(98)00047-0
Kuna, 2006, Finite element analyses of cracks in piezoelectric structures: A survey, Arch. Appl. Mech., 76, 725, 10.1007/s00419-006-0059-z
Pan, 1999, A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids, Eng. Anal. Bound. Elem., 23, 67, 10.1016/S0955-7997(98)00062-9
Rajapakse, 2001, Boundary element modeling of cracks in piezoelectric solids, Eng. Anal. Bound. Elem., 25, 771, 10.1016/S0955-7997(01)00058-3
Garcia-Sanchez, 2007, 2D transient dynamic crack analysis in piezoelectric solids by BEM, Comput. Mater. Sci., 39, 179, 10.1016/j.commatsci.2006.03.021
Garcia-Sanchez, 2008, 2-D transient dynamic analysis of cracked piezoelectric solids by a time-domain BEM, Comput. Methods Appl. Mech. Engrg., 197, 3108, 10.1016/j.cma.2008.02.013
Lei, 2015, Comparison of several BEM-based approaches in evaluating crack-tip field intensity factors in piezoelectric materials, Int. J. Fract., 189, 111, 10.1007/s10704-014-9964-2
Lei, 2015, Transient dynamic interface crack analysis in magnetoelectroelastic bi-materials by a time-domain BEM, Eur. J. Mech. A Solids, 49, 146, 10.1016/j.euromechsol.2014.07.010
Wünsche, 2010, A 2D time-domain collocation-Galerkin BEM for dynamic crack analysis in piezoelectric solids, Eng. Anal. Bound. Elem., 34, 377, 10.1016/j.enganabound.2009.11.004
Sladek, 2007, Fracture analyses in continuously nonhomogeneous piezoelectric solids by the MLPG, Comput. Model. Eng. Sci., 19, 247
Sladek, 2007, Evaluation of fracture parameters in continuously nonhomogeneous piezoelectric solids, Int. J. Fract., 145, 313, 10.1007/s10704-007-9130-1
Sladek, 2008, Dynamic 3-D axisymmetric problems in continuously nonhomogeneous piezoelectric solids, Int. J. Solids Struct., 45, 4523, 10.1016/j.ijsolstr.2008.03.027
Liew, 2007, Boundary element-free method for fracture analysis of 2-D anisotropic piezoelectric solids, Internat. J. Numer. Methods Engrg., 69, 729, 10.1002/nme.1786
Li, 2013, Fracture analysis of piezoelectric materials using the scaled boundary finite element method, Eng. Fract. Mech., 97, 52, 10.1016/j.engfracmech.2012.10.019
Li, 2014, 2D dynamic analysis of cracks and interface cracks in piezoelectric composites using the SBFEM, Int. J. Solids Struct., 51, 2096, 10.1016/j.ijsolstr.2014.02.014
Béchet, 2009, Application of the X-FEM to the fracture of piezoelectric materials, Internat. J. Numer. Methods Engrg., 77, 1535, 10.1002/nme.2455
Shama, 2013, Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method, Eng. Fract. Mech., 104, 114, 10.1016/j.engfracmech.2013.03.012
Bui, 2012, Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading, Comput. Mater. Sci., 62, 243, 10.1016/j.commatsci.2012.05.049
Bui, 2013, Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM, Finite Elem. Anal. Des., 69, 19, 10.1016/j.finel.2013.02.001
Liu, 2013, Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM, Comput. Mater. Sci., 69, 542, 10.1016/j.commatsci.2012.11.009
Liu, 2014, Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method, Int. J. Solids Struct., 51, 2167, 10.1016/j.ijsolstr.2014.02.024
Belytschko, 2009, A review of extended/generalizad finite element methods for material modeling, Modelling Simul. Mater. Sci. Eng., 17, 043001, 10.1088/0965-0393/17/4/043001
Fries, 2010, The generalized/extended finite element method: An overview of the method and its application, Internat. J. Numer. Methods Engrg., 84, 253, 10.1002/nme.2914
Bhattacharya, 2013, Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM, Comput. Mech., 52, 799, 10.1007/s00466-013-0845-8
Yu, 2015, A stabilized discrete shear gap extended finite element for the analysis of cracked Reissner–Mindlin plate vibration problems involving distorted meshes, Int. J. Mech. Des.
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
Yu, 2015, A simple FSDT-based isogeometric analysis for geometrically nonlinear analysis of functionally graded plates, Finite Elem. Anal. Des., 96, 1, 10.1016/j.finel.2014.11.003
Shojaee, 2012, Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method, Compos. Struct., 94, 677, 10.1016/j.compstruct.2012.01.012
Yin, 2014, Bordas SPA. Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates, Compos. Struct., 118, 121, 10.1016/j.compstruct.2014.07.028
Valizadeh, 2013, NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter, Compos. Struct., 99, 309, 10.1016/j.compstruct.2012.11.008
Valizadeh, 2013, Isogeometric simulation for buckling, free and forced vibration of orthotropic plates, Int. J. Appl. Mech., 05, 1350017, 10.1142/S1758825113500178
Nguyen, 2014, Isogeometric analysis for unsaturated flow problems, Comput. Geotech., 62, 257, 10.1016/j.compgeo.2014.08.003
Benson, 2010, A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM, Internat. J. Numer. Methods Engrg., 83, 765, 10.1002/nme.2864
De Luycker, 2011, X-FEM in isogeometric analysis for linear fracture mechanics, Internat. J. Numer. Methods Engrg., 87, 541, 10.1002/nme.3121
Ghorashi, 2011, Extended isogeometric analysis for simulation of stationary and propagating cracks, Internat. J. Numer. Methods Engrg., 89, 1069, 10.1002/nme.3277
Haasemann, 2011, Development of a quadratic finite element formulation based on the XFEM and NURBS, Internat. J. Numer. Methods Engrg., 86, 598, 10.1002/nme.3120
Bayesteh, 2015, Thermo-mechanical fracture study of inhomogeneous cracked solids by the extended isogeometric analysis method, Eur. J. Mech. A Solids, 51, 123, 10.1016/j.euromechsol.2014.12.004
Ghorashi, 2015, T-spline based XIGA for fracture analysis of orthotropic media, Comput. Struct., 147, 138, 10.1016/j.compstruc.2014.09.017
Jia, 2014, Extended isogeometric analysis for material interface problems, IMA J. Appl. Math., 1
Bhardwaj, 2015, Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA, Comput. Methods Appl. Mech. Engrg., 284, 186, 10.1016/j.cma.2014.08.015
Bhardwaj, 2015, Fatigue crack growth analysis of a homogeneous plate in the presence of multiple defects using extended isogeometric analysis, J. Braz. Soc. Mech. Sci. Eng., 10.1007/s40430-014-0232-1
Bhardwaj, 2015, Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions, Compos. Struct., 126, 347, 10.1016/j.compstruct.2015.02.066
Singh, 2015, A new criterion for modeling multiple discontinuities passing through an element using XIGA, J. Mech. Sci. Technol., 29, 1141, 10.1007/s12206-015-0225-8
Pisarenko, 1985, Anisotropy of fracture toughness of piezoelectric ceramics, J. Am. Ceram. Soc., 68, 259, 10.1111/j.1151-2916.1985.tb15319.x
Piegl, 1997
Laborde, 2005, High-order extended finite element method for cracked domains, Internat. J. Numer. Methods Engrg., 64, 354, 10.1002/nme.1370
Wang, 2010, An improved NUBRS-based isogeometric analysis with enhanced treatment of essential boundary conditions, Comput. Mech. Appl. Mech. Eng., 199, 2425, 10.1016/j.cma.2010.03.032
Yin, 2015, Two improved treatment methods for Dirichlet-type boundary conditions in isogeometric analysis, Eur. J. Mech. A Solids
Koo, 2013, Isogeometric shape design sensitivity analysis using transformed basis functions for Kronecker delta property, Comput. Methods Appl. Mech. Engrg., 253, 505, 10.1016/j.cma.2012.08.014
Fernandez-Mendez, 2004, Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Engrg., 193, 1257, 10.1016/j.cma.2003.12.019
Rao, 2008, Interaction integrals for fracture analysis of functionally graded piezoelectric materials, Int. J. Solids Struct., 45, 5237, 10.1016/j.ijsolstr.2008.05.020
Liu, 2012, The singular edge-based smoothed finite element method for stationary dynamic crack problems in 2D elastic solids, Comput. Methods Appl. Mech. Engrg., 233–236, 68, 10.1016/j.cma.2012.04.008
Hao, 1994, A new electric boundary condition of electric fracture mechanics and its applications, Eng. Fract. Mech., 47, 793, 10.1016/0013-7944(94)90059-0
Shindo, 2009, Effect of the electrical boundary condition at the crack face on the mode I energy release rate in piezoelectric ceramics, Appl. Phys. Lett., 94, 081902, 10.1063/1.3088855
Wang, 2003, On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics, Internat. J. Engrg. Sci., 41, 633, 10.1016/S0020-7225(02)00149-0
Janski, 2011, Crack propagation simulations in piezoelectric structures with an efficient adaptive finite element tool, 163
Meschke, 2007, Energy-based modeling of cohesive and cohesionless cracks via X-FEM, Comput. Methods Appl. Mech. Engrg., 196, 2338, 10.1016/j.cma.2006.11.016