Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat

Cognitive Neurodynamics - Tập 6 Số 4 - Trang 307-324 - 2012
Gaute T. Einevoll1, Hans Ekkehard Pleßer1
1Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, PO Box 5003, 1432, Aas, Norway

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abramowitz M, Stegun I (1965) Handbook of mathematical functions. Dover, New York

Ahlsén G, Grant K, Lindström S (1982) Monosynaptic excitation of principal cells in the lateral geniculate nucleus by corticofugal fibers. Brain Res 234:454–458

Andolina I, Wang W, Jones H, Salt T, Sillito A (2002) Effects of feedback on cat lgn cell spatial summation parameters dissected with the difference of gaussian model (DOGM). In: Society for neuroscience abstract, vol 32. Society for Neuroscience, Washington, DC, p 352.17

Andolina I, Jones H, Wang W, Sillito A (2007) Corticothalamic feedback enhances stimulus response precision in the visual system. Proc Natl Acad Sci 104:1685–1690

Bracewell R (1986) The Fourier transform and its applications. McGraw-Hill, New York

Briggs F, Usrey W (2007) A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. J Neurosci 27:5431–5436

Briggs F, Usrey W (2008) Emerging views of corticothalamic functionemerging views of corticothalamic function. Curr Opin Neurobiol 18:403–407

Briggs F, Usrey W (2009) Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 62:135–146

Briggs F, Usrey W (2011) Corticogeniculate feedback and visual processing in the primate. J Physiol 589:33–40

Cheng H, Chino Y, Smith IE, Hamamoto J, Yoshida K (1995) Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast. J Neurophysiol 74:2548–2557

Cudeiro J, Sillito A (1996) Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus. J Physiol 490:481–492

Dayan P, Abbott L (2001) Theoretical neuroscience. MIT Press, Cambridge

Destexhe A (2000) Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J Physiol (Paris) 94:391–410

Destexhe A, Contreras D, Steriade M (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 79:999–1016

Einevoll G, Heggelund P (2000) Mathematical models for the spatial receptive-field organization of nonlagged X cells in dorsal lateral geniculate nucleus of cat. Vis Neurosci 17:871–886

Einevoll G, Plesser H (2002) Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting-grating stimuli. Netw Comp Neur Syst 13:503–530

Einevoll G, Plesser H (2003) Extended DOG receptive-field model for LGN relay cells incorporating cortical-feedback effects. In: Society for Neuroscience Abstracts, vol 33. Society for Neuroscience, Washington, DC, p 68.11

Einevoll G, Plesser H (2005) Response of the difference-of-gaussians model to circular drifting-grating patches. Vis Neurosci 22:437–446

Geisert E, Langsetmo A, Spear P (1981) Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons. Brain Res 208:409–415

Godwin D, Vaughan J, Sherman S (1996) Metabotropic glutamate receptors switch visual response mode of lateral geniculate cells from burst to tonic. J Neurophysiol 76:1800–1816

Grieve K, Sillito A (1995) Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum. J Neurosci 15:4868–4874

Hayot F, Tranchina D (2001) Modeling corticofugal feedback and the sensitivity of lateral geniculate neurons to orientation discontinuity. Vis Neurosci 18:865–877

Heeger D (1991) Nonlinear model of neural responses in cat visual cortex. In: Landy M, Movshon J (eds) Computational models of visual processing, MIT Press, Cambridge, pp 119–134

Hillenbrand U, van Hemmen L (2000) Spatiotemporal adaptation through corticothalamic loops: a hypothesis. Vis Neurosci 17:107–118

Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

Jing W, Liu W-Z, Gong X-W, Gong H-Q, Liang P-J (2010) Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities. Cogn Neurodyn 3:179–188

Jones H, Andolina I, Oakely N, Murphy P, Sillito A (2000) Spatial summation in lateral geniculate nucleus and visual cortex. Exp Brain Res 135:279–284

Kirkland K, Gerstein G (1998) A model of cortically induced synchronization in the lateral geniculate nucleus of the cat: a role for low-threshold calcium channels. Vis Res 38:2007–2022

Kirkland K, Sillito A, Jones H, West D, Gerstein G (2000) Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex. J Neurophysiol 84:1863–1868

Köhn J, Wörgötter F (1996) Corticofugal feedback can reduce the visual latency of responses to visual stimuli. Biol Cybern 75:199–209

Liang L, Wang R, Zhang Z (2010) The modeling and simulation of visuospatial working memory. Cogn Neurodyn 4:359–366

Marrocco R, McClurkin J, Young R (1982) Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway. J Neurosci 2:256–263

Marrocco R, McClurkin J, Alkire M (1996) The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate cells. Brain Res 737:110–118

Mayer J, Schuster H, Claussen J, Mölle M (2007) Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators. Phys Rev Lett 99:68–102

McClurkin J, Marrocco R (1984) Cortical input to the monkey lateral geniculate nucleus alters visual spatial tuning in monkey lateral geniculate nucleus cells. J Physiol (Lond) 348:135–152

McClurkin J, Optican L, Richmond B (1994) Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons. Vis Neurosci 11:601–617

McCormick D, von Krosigk M (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc Nat Acad Sci 89:2774–2778

Murphy P, Sillito A (1987) Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329:727–729

Murphy P, Sillito A (1996) Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J Neurosci 16:1180–1192

Murphy P, Duckett S, Sillito A (1999) Feedback connections to the lateral geniculate nucleus and cortical response properties. Science 286:1552–1554

Norheim E, Wyller J, Nordlie E, Einevoll G (2011) Feedback and feedforward contributions to temporal signal processing in the lateral geniculate nucleus. Cogn Neurodyn (submitted)

Reid C, Alonso JM (1995) Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281–284

Rodieck R (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis Res 5:583–601

Saglam M, Hayashida Y, Murayama N (2009) A retinal circuit model accounting for wide-field amacrine cells. Cogn Neurodyn 1:25–32

Sherman S, Guillery R (2001) Exploring the thalamus. Academic Press, New York

Sillito A, Jones H (2002) Corticothalamic interactions in the transfer of visual information. Phil Trans R Soc Lond B 357:1739–1752

Sillito A, Jones H (2004) Feedback systems in visual processing. In: The visual neurosciences, vol 1, MIT Press, Cambridge, pp 609–624

Sillito A, Cudeiro J, Murphy P (1993) Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp Brain Res 93:6–16

Sillito A, Jones H, Gerstein G, West D (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369:479–482

So Y, Shapley R (1981) Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay cells and perigeniculate interneurons. J Neurophys 45:107–120

Troyer T, Krukowski A, Priebe N, Miller K (1998) Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J Neurosci 18:5908–5927

Troyer T, Krukowski A, Miller K (2002) LGN input to simple cells and contrast-invariant orientation tuning: an analysis. J Neurophysiol 87:2741–2752

Vidyasagar T, Urbas J (1982) Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp Brain Res 46:157–169

Wang R, Zhang Z (2007) Energy coding in biological neural networks. Cogn Neurodyn 3:203–212

Wang W, Jones H, Andolina I, Salt T, Sillito A (2006) Functional alignment of feedback effects from visual cortex to thalamus. Nature Neurosci 9:1330–1336

Weber A, Kalil R, Behan M (1989) Synaptic connections between corticogeniculate axons and interneurons in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 289:156–164

Wörgötter F, Nelle E, Li B, Funke K (1998) The influence of corticofugal feedback on the temporal structure of visual response of cat thalamic relay cells. J Physiol 509:797–815

Yousif N, Denham M (2007) The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational study. Biol Cybern 97:269–277