Expression patterns of ABCE model genes during flower development of melon (Cucumis melo L.)
Tài liệu tham khảo
Alvarez-Buylla, 2010, Flower development, Arabidopsis Book, 8, e127, 10.1199/tab.0127
Angenent, 1995, A novel class of MADS box genes is involved in ovule development in petunia, Plant Cell, 7, 1569
Boualem, 2015, A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges, Science, 350, 688, 10.1126/science.aac8370
Boualem, 2008, A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons, Science, 321, 836, 10.1126/science.1159023
Chen, 2017, Evolutionary analysis of MIKC(c)-Type MADS-box genes in gymnosperms and angiosperms, Front. Plant Sci., 8, 895, 10.3389/fpls.2017.00895
Chen, 2004, A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development, Science, 303, 2022, 10.1126/science.1088060
Cheng, 2019, The MADS-box gene CsSHP participates in fruit maturation and floral organ development in cucumber, Front. Plant Sci., 10, 1781, 10.3389/fpls.2019.01781
Coen, 1991, The war of the whorls: genetic interactions controlling flower development, Nature, 353, 31, 10.1038/353031a0
Ditta, 2004, The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity, Curr. Biol., 14, 1935, 10.1016/j.cub.2004.10.028
Favaro, 2003, MADS-box protein complexes control carpel and ovule development in Arabidopsis, Plant Cell, 15, 2603, 10.1105/tpc.015123
Feng, 2020, Advances in AP2/ERF super-family transcription factors in plant, Crit. Rev. Biotechnol., 40, 750, 10.1080/07388551.2020.1768509
Garcia-Mas, 2012, The genome of melon (Cucumis melo L.), Proc. Natl. Acad. Sci. U. S. A., 109, 11872, 10.1073/pnas.1205415109
Ge, 2020, Transcriptome profiling reveals the occurrence mechanism of bisexual flowers in melon (Cucumis melo L.), Plant Sci., 301, 10.1016/j.plantsci.2020.110694
Ghaemizadeh, 2019, Expression pattern of ABCDE model genes in floral organs of bolting garlic clone, Gene Expr. Patterns, 34, 10.1016/j.gep.2019.119059
Girek, 2013, The effect of growth regulators on sex expression in melon (Cucumis melo L.), CROP BREED APPL BIOT, 13, 165, 10.1590/S1984-70332013000300003
Goto, 1994, Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA, Genes Dev., 8, 1548, 10.1101/gad.8.13.1548
Gramzow, 2013, Phylogenomics of MADS-box genes in plants - two opposing life styles in one gene family, Biology, 2, 1150, 10.3390/biology2031150
Guo, 2015, Co-Ordination of flower development through epigenetic regulation in two model species: rice and Arabidopsis, Plant Cell Physiol., 56, 830, 10.1093/pcp/pcv037
Hao, 2016, Low night temperature affects the phloem ultrastructure of lateral branches and raffinose family oligosaccharide (RFO) accumulation in RFO-transporting plant melon (cucumismelo L.) during fruit expansion, PLoS One, 11, 10.1371/journal.pone.0160909
Heijmans, 2012, Redefining C and D in the petunia ABC, Plant Cell, 24, 2305, 10.1105/tpc.112.097030
Hempel, 1995, Specification of chimeric flowering shoots in wild-type Arabidopsis, Plant J., 8, 725, 10.1046/j.1365-313X.1995.08050725.x
Hileman, 2006, Molecular and phylogenetic analyses of the MADS-box gene family in tomato, Mol. Biol. Evol., 23, 2245, 10.1093/molbev/msl095
Honma, 2001, Complexes of MADS-box proteins are sufficient to convert leaves into floral organs, Nature, 409, 525, 10.1038/35054083
Jack, 1992, The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens, Cell, 68, 683, 10.1016/0092-8674(92)90144-2
Jofuku, 1994, Control of Arabidopsis flower and seed development by the homeotic gene APETALA2, Plant Cell, 6, 1211
Kaufmann, 2005, MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants, Gene, 347, 183, 10.1016/j.gene.2004.12.014
Kim, 2006, Phylogeny and domain evolution in the APETALA2-like gene family, Mol. Biol. Evol., 23, 107, 10.1093/molbev/msj014
Komeda, 2004, Genetic regulation of time to flower in Arabidopsis thaliana, Annu. Rev. Plant Biol., 55, 521, 10.1146/annurev.arplant.55.031903.141644
Kramer, 2004, Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms, Genetics, 166, 1011, 10.1093/genetics/166.2.1011
Liljegren, 2000, SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis, Nature, 404, 766, 10.1038/35008089
Litt, 2003, Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development, Genetics, 165, 821, 10.1093/genetics/165.2.821
Liu, 2009, Coming into bloom: the specification of floral meristems, Development, 136, 3379, 10.1242/dev.033076
Long, 2000, Initiation of axillary and floral meristems in Arabidopsis, Dev. Biol., 218, 341, 10.1006/dbio.1999.9572
Mandel, 1992, Molecular characterization of the Arabidopsis floral homeotic gene APETALA1, Nature, 360, 273, 10.1038/360273a0
Martin, 2009, A transposon-induced epigenetic change leads to sex determination in melon, Nature, 461, 1135, 10.1038/nature08498
Mayer, 1998, Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem, Cell, 95, 805, 10.1016/S0092-8674(00)81703-1
O'Maoileidigh, 2014, Gene networks controlling Arabidopsis thaliana flower development, New Phytol., 201, 16, 10.1111/nph.12444
Parenicova, 2003, Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world, Plant Cell, 15, 1538, 10.1105/tpc.011544
Pelaz, 2000, B and C floral organ identity functions require SEPALLATA MADS-box genes, Nature, 405, 200, 10.1038/35012103
Petrella, 2020, BPC transcription factors and a Polycomb Group protein confine the expression of the ovule identity gene SEEDSTICK in Arabidopsis, Plant J., 102, 582, 10.1111/tpj.14673
Pinyopich, 2003, Assessing the redundancy of MADS-box genes during carpel and ovule development, Nature, 424, 85, 10.1038/nature01741
Saitou, 1987, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4, 406
Schoof, 2000, The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes, Cell, 100, 635, 10.1016/S0092-8674(00)80700-X
Silberstein, 2003, Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes, Genome, 46, 761, 10.1139/g03-060
Smaczniak, 2012, Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies, Development, 139, 3081, 10.1242/dev.074674
Soltis, 2007, The ABC model and its applicability to basal angiosperms, Ann. Bot., 100, 155, 10.1093/aob/mcm117
Tanaka, 2007, Molecular characterization of South and East Asian melon, Cucumis melo L, and the origin of Group Conomon var. makuwa and var. conomon revealed by RAPD analysis, Euphytica, 153, 233, 10.1007/s10681-006-9259-4
Theissen, 2001, Plant biology. Floral quartets, Nature, 409, 469, 10.1038/35054172
Theissen, 2000, A short history of MADS-box genes in plants, Plant Mol. Biol., 42, 115, 10.1023/A:1006332105728
Zahn, 2005, The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history, Genetics, 169, 2209, 10.1534/genetics.104.037770
Zhu, 2018, GLABROUS (CmGL) encodes a HD-ZIP IV transcription factor playing roles in multicellular trichome initiation in melon, Theor. Appl. Genet., 131, 569, 10.1007/s00122-017-3019-9