Expression patterns of ABCE model genes during flower development of melon (Cucumis melo L.)

Gene Expression Patterns - Tập 47 - Trang 119306 - 2023
Yufan Sun1, Tiantian Ren1, Jiateng Zhao1, Wensheng Zhao1,2,3, Lanchun Nie1,2,3
1College of Horticulture, Hebei Agricultural University, Baoding, 071000, Hebei, China
2Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, 071000, Hebei, China
3Collaborative Innovation Center of Vegetative Industry of Hebei Province, Baoding, 071000, Hebei, China

Tài liệu tham khảo

Alvarez-Buylla, 2010, Flower development, Arabidopsis Book, 8, e127, 10.1199/tab.0127 Angenent, 1995, A novel class of MADS box genes is involved in ovule development in petunia, Plant Cell, 7, 1569 Boualem, 2015, A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges, Science, 350, 688, 10.1126/science.aac8370 Boualem, 2008, A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons, Science, 321, 836, 10.1126/science.1159023 Chen, 2017, Evolutionary analysis of MIKC(c)-Type MADS-box genes in gymnosperms and angiosperms, Front. Plant Sci., 8, 895, 10.3389/fpls.2017.00895 Chen, 2004, A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development, Science, 303, 2022, 10.1126/science.1088060 Cheng, 2019, The MADS-box gene CsSHP participates in fruit maturation and floral organ development in cucumber, Front. Plant Sci., 10, 1781, 10.3389/fpls.2019.01781 Coen, 1991, The war of the whorls: genetic interactions controlling flower development, Nature, 353, 31, 10.1038/353031a0 Ditta, 2004, The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity, Curr. Biol., 14, 1935, 10.1016/j.cub.2004.10.028 Favaro, 2003, MADS-box protein complexes control carpel and ovule development in Arabidopsis, Plant Cell, 15, 2603, 10.1105/tpc.015123 Feng, 2020, Advances in AP2/ERF super-family transcription factors in plant, Crit. Rev. Biotechnol., 40, 750, 10.1080/07388551.2020.1768509 Garcia-Mas, 2012, The genome of melon (Cucumis melo L.), Proc. Natl. Acad. Sci. U. S. A., 109, 11872, 10.1073/pnas.1205415109 Ge, 2020, Transcriptome profiling reveals the occurrence mechanism of bisexual flowers in melon (Cucumis melo L.), Plant Sci., 301, 10.1016/j.plantsci.2020.110694 Ghaemizadeh, 2019, Expression pattern of ABCDE model genes in floral organs of bolting garlic clone, Gene Expr. Patterns, 34, 10.1016/j.gep.2019.119059 Girek, 2013, The effect of growth regulators on sex expression in melon (Cucumis melo L.), CROP BREED APPL BIOT, 13, 165, 10.1590/S1984-70332013000300003 Goto, 1994, Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA, Genes Dev., 8, 1548, 10.1101/gad.8.13.1548 Gramzow, 2013, Phylogenomics of MADS-box genes in plants - two opposing life styles in one gene family, Biology, 2, 1150, 10.3390/biology2031150 Guo, 2015, Co-Ordination of flower development through epigenetic regulation in two model species: rice and Arabidopsis, Plant Cell Physiol., 56, 830, 10.1093/pcp/pcv037 Hao, 2016, Low night temperature affects the phloem ultrastructure of lateral branches and raffinose family oligosaccharide (RFO) accumulation in RFO-transporting plant melon (cucumismelo L.) during fruit expansion, PLoS One, 11, 10.1371/journal.pone.0160909 Heijmans, 2012, Redefining C and D in the petunia ABC, Plant Cell, 24, 2305, 10.1105/tpc.112.097030 Hempel, 1995, Specification of chimeric flowering shoots in wild-type Arabidopsis, Plant J., 8, 725, 10.1046/j.1365-313X.1995.08050725.x Hileman, 2006, Molecular and phylogenetic analyses of the MADS-box gene family in tomato, Mol. Biol. Evol., 23, 2245, 10.1093/molbev/msl095 Honma, 2001, Complexes of MADS-box proteins are sufficient to convert leaves into floral organs, Nature, 409, 525, 10.1038/35054083 Jack, 1992, The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens, Cell, 68, 683, 10.1016/0092-8674(92)90144-2 Jofuku, 1994, Control of Arabidopsis flower and seed development by the homeotic gene APETALA2, Plant Cell, 6, 1211 Kaufmann, 2005, MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants, Gene, 347, 183, 10.1016/j.gene.2004.12.014 Kim, 2006, Phylogeny and domain evolution in the APETALA2-like gene family, Mol. Biol. Evol., 23, 107, 10.1093/molbev/msj014 Komeda, 2004, Genetic regulation of time to flower in Arabidopsis thaliana, Annu. Rev. Plant Biol., 55, 521, 10.1146/annurev.arplant.55.031903.141644 Kramer, 2004, Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms, Genetics, 166, 1011, 10.1093/genetics/166.2.1011 Liljegren, 2000, SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis, Nature, 404, 766, 10.1038/35008089 Litt, 2003, Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development, Genetics, 165, 821, 10.1093/genetics/165.2.821 Liu, 2009, Coming into bloom: the specification of floral meristems, Development, 136, 3379, 10.1242/dev.033076 Long, 2000, Initiation of axillary and floral meristems in Arabidopsis, Dev. Biol., 218, 341, 10.1006/dbio.1999.9572 Mandel, 1992, Molecular characterization of the Arabidopsis floral homeotic gene APETALA1, Nature, 360, 273, 10.1038/360273a0 Martin, 2009, A transposon-induced epigenetic change leads to sex determination in melon, Nature, 461, 1135, 10.1038/nature08498 Mayer, 1998, Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem, Cell, 95, 805, 10.1016/S0092-8674(00)81703-1 O'Maoileidigh, 2014, Gene networks controlling Arabidopsis thaliana flower development, New Phytol., 201, 16, 10.1111/nph.12444 Parenicova, 2003, Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world, Plant Cell, 15, 1538, 10.1105/tpc.011544 Pelaz, 2000, B and C floral organ identity functions require SEPALLATA MADS-box genes, Nature, 405, 200, 10.1038/35012103 Petrella, 2020, BPC transcription factors and a Polycomb Group protein confine the expression of the ovule identity gene SEEDSTICK in Arabidopsis, Plant J., 102, 582, 10.1111/tpj.14673 Pinyopich, 2003, Assessing the redundancy of MADS-box genes during carpel and ovule development, Nature, 424, 85, 10.1038/nature01741 Saitou, 1987, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4, 406 Schoof, 2000, The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes, Cell, 100, 635, 10.1016/S0092-8674(00)80700-X Silberstein, 2003, Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes, Genome, 46, 761, 10.1139/g03-060 Smaczniak, 2012, Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies, Development, 139, 3081, 10.1242/dev.074674 Soltis, 2007, The ABC model and its applicability to basal angiosperms, Ann. Bot., 100, 155, 10.1093/aob/mcm117 Tanaka, 2007, Molecular characterization of South and East Asian melon, Cucumis melo L, and the origin of Group Conomon var. makuwa and var. conomon revealed by RAPD analysis, Euphytica, 153, 233, 10.1007/s10681-006-9259-4 Theissen, 2001, Plant biology. Floral quartets, Nature, 409, 469, 10.1038/35054172 Theissen, 2000, A short history of MADS-box genes in plants, Plant Mol. Biol., 42, 115, 10.1023/A:1006332105728 Zahn, 2005, The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history, Genetics, 169, 2209, 10.1534/genetics.104.037770 Zhu, 2018, GLABROUS (CmGL) encodes a HD-ZIP IV transcription factor playing roles in multicellular trichome initiation in melon, Theor. Appl. Genet., 131, 569, 10.1007/s00122-017-3019-9