Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Biểu hiện của các yếu tố kích thích angiogenesis như yếu tố tăng trưởng nội mô mạch máu và interleukin-8/CXCL8 ở các khối u vú người có đáp ứng với tình trạng thiếu dinh dưỡng và căng thẳng lưới nội chất
Tóm tắt
Sự biểu hiện của các cytokine kích thích angiogenesis, chẳng hạn như yếu tố tăng trưởng nội mô mạch máu (VEGF) và interleukin-8/CXCL8 (IL-8), đóng vai trò quan trọng trong sự phát triển và di căn của khối u. Tình trạng thiếu oxy trong các khối u có ít mạch máu được cho là động lực chính gây ra sự tiết VEGF. Sự biểu hiện của IL-8 bởi các khối u rắn được cho là chủ yếu do các yếu tố nội tại, chẳng hạn như sự kích hoạt không biến đổi của yếu tố nhân kappa B (NF-κB). Tuy nhiên, sự biểu hiện VEGF có thể phản ứng với tình trạng thiếu glucose, cho thấy rằng nồng độ thấp của các chất dinh dưỡng khác ngoài oxy có thể đóng vai trò trong việc kích thích kiểu hình pro-angiogenic. Tình trạng thiếu glucose gây ra sự căng thẳng của lưới nội chất (ER) và thay đổi sự biểu hiện gen thông qua con đường tín hiệu phản ứng của protein không gập (UPR). Một nhánh của UPR, được biết đến như phản ứng quá tải ER (EOR), có thể gây ra sự kích hoạt NF-κB. Do đó, chúng tôi giả thuyết rằng các phương pháp điều trị gây ra căng thẳng ER và sự thiếu hụt các chất dinh dưỡng khác, chẳng hạn như amino acid, sẽ kích thích sự biểu hiện của các cytokine angiogenic ở các dòng tế bào ung thư vú. Chúng tôi phát hiện rằng tình trạng thiếu glutamine và điều trị bằng chất kích thích hóa học gây căng thẳng ER (tunicamycin) đã gây ra sự gia tăng đáng kể sự tiết của protein VEGF và IL-8 bởi một dòng tế bào adenocarcinoma vú người (tế bào TSE). Tình trạng thiếu glutamine, thiếu glucose và một số chất kích thích hóa học gây căng thẳng ER đã làm tăng biểu hiện mRNA của VEGF và IL-8 trong các dòng tế bào ung thư vú TSE và các dòng khác được nuôi cấy dưới cả điều kiện bình thường và thiếu oxy, mặc dù tình trạng thiếu oxy thường làm giảm tác động của tình trạng thiếu glucose. Trong số tất cả các amino acid được thử nghiệm, sẵn có glutamine trong môi trường có ảnh hưởng lớn nhất đến sự biểu hiện mRNA của VEGF và IL-8. Sự kích thích biểu hiện mRNA của VEGF, nhưng không phải IL-8, được duy trì và tương ứng chặt chẽ với sự biểu hiện gia tăng của các gen nhạy cảm với căng thẳng ER như protein 78 điều hòa bởi glucose (GRP78) và gen 153 gây cản trở tăng trưởng và gây tổn thương DNA (GADD153). Những kết quả này cho thấy rằng việc thiếu hụt dinh dưỡng trong môi trường vi mô của khối u rắn có thể góp phần vào sự kích hoạt kiểu hình pro-angiogenic. Chuyển đổi angiogenic có thể hoạt động để tăng cường cung cấp máu nhằm phản ứng với tình trạng thiếu dinh dưỡng cũng như thiếu oxy.
Từ khóa
#angiogenesis #VEGF #IL-8 #căng thẳng lưới nội chất #thiếu hụt dinh dưỡngTài liệu tham khảo
Vaupel P, Hockel M: Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. International Journal of Oncology. 2000, 17: 869-879.
Giordano FJ, Johnson RS: Angiogenesis: the role of the microenvironment in flipping the switch. Current Opinion in Genetics & Development. 2001, 11: 35-40.
Marti HH, Risau W: Angiogenesis in ischemic disease. Thrombosis & Haemostasis. 1999, 82: 44-52.
Harris AL: Hypoxia--a key regulatory factor in tumour growth. Nature Reviews. Cancer. 2002, 2: 38-47.
Ferrara N: Role of vascular endothelial growth factor in regulation of physiological angiogenesis. American Journal of Physiology - Cell Physiology. 2001, 280: C1358-66.
Ferrara N: Molecular and biological properties of vascular endothelial growth factor. Journal of Molecular Medicine. 1999, 77: 527-543.
Baek JH, Jang JE, Kang CM, Chung HY, Kim ND, Kim KW: Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene. 2000, 19: 4621-4631.
Pidgeon GP, Barr MP, Harmey JH, Foley DA, Bouchier-Hayes DJ: Vascular endothelial growth factor (VEGF) upregulates BCL-2 and inhibits apoptosis in human and murine mammary adenocarcinoma cells. British Journal of Cancer. 2001, 85: 273-278.
Foekens JA, Peters HA, Grebenchtchikov N, Look MP, Meijer-Van Gelder ME, Geurts-Moespot A, van Der Kwast TH, Sweep CG, Klijn JG: High tumor levels of vascular endothelial growth factor predict poor response to systemic therapy in advanced breast cancer. Cancer Research. 2001, 61: 5407-5414.
Gasparini G: Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist. 2000, 5: 37-44.
Kotch LE, Iyer NV, Laughner E, Semenza GL: Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Developmental Biology. 1999, 209: 254-267.
Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK: Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element--> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Research. 2000, 60: 6248-6252.
Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW, Ratcliffe PJ: Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proceedings of the National Academy of Sciences of the United States of America. 1997, 94: 8104-8109.
Raleigh JA, Calkins-Adams DP, Rinker LH, Ballenger CA, Weissler MC, Fowler W. C., Jr., Novotny DB, Varia MA: Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Research. 1998, 58: 3765-3768.
Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B: Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998, 94: 715-725.
West CM, Cooper RA, Loncaster JA, Wilks DP, Bromley M: Tumor vascularity: a histological measure of angiogenesis and hypoxia. Cancer Research. 2001, 61: 2907-2910.
Park SH, Kim KW, Lee YS, Baek JH, Kim MS, Lee YM, Lee MS, Kim YJ: Hypoglycemia-induced VEGF expression is mediated by intracellular Ca2+ and protein kinase C signaling pathway in HepG2 human hepatoblastoma cells. International Journal of Molecular Medicine. 2001, 7: 91-96.
Satake S, Kuzuya M, Miura H, Asai T, Ramos MA, Muraguchi M, Ohmoto Y, Iguchi A: Up-regulation of vascular endothelial growth factor in response to glucose deprivation. Biology of the Cell. 1998, 90: 161-168.
Stein I, Neeman M, Shweiki D, Itin A, Keshet E: Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Molecular & Cellular Biology. 1995, 15: 5363-5368.
Abcouwer SF, Marjon PL, Loper RK, Vander Jagt DL: Response of VEGF expression to amino acid deprivation and inducers of endoplasmic reticulum stress. Investigative Ophthalmology & Visual Science. 2002, 43: 2791-2798.
Gazit G, Kane SE, Nichols P, Lee AS: Use of the stress-inducible grp78/BiP promoter in targeting high level gene expression in fibrosarcoma in vivo. Cancer Research. 1995, 55: 1660-1663.
Gazit G, Hung G, Chen X, Anderson WF, Lee AS: Use of the glucose starvation-inducible glucose-regulated protein 78 promoter in suicide gene therapy of murine fibrosarcoma. Cancer Research. 1999, 59: 3100-3106.
Reddy RK, Lu J, Lee AS: The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca(2+)-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. Journal of Biological Chemistry. 1999, 274: 28476-28483.
Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM, Kennedy KA, Patierno SR: Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Research & Treatment. 2000, 59: 15-26. 10.1023/A:1006332011207.
Chen X, Ding Y, Liu CG, Mikhail S, Yang CS: Overexpression of glucose-regulated protein 94 (Grp94) in esophageal adenocarcinomas of a rat surgical model and humans. Carcinogenesis. 2002, 23: 123-130.
Korabiowska M, Cordon-Cardo C, Betke H, Schlott T, Kotthaus M, Stachura J, Brinck U: GADD153 is an independent prognostic factor in melanoma: immunohistochemical and molecular genetic analysis. Histology & Histopathology. 2002, 17: 805-811.
Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appella E, Oppenheim JJ, Leonard EJ: Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proceedings of the National Assembly of Science USA. 1987, 84: 9233-9237.
Xie K: Interleukin-8 and human cancer biology. Cytokine & Growth Factor Reviews. 2001, 12: 375-391.
De Larco JE, Wuertz BR, Rosner KA, Erickson SA, Gamache DE, Manivel JC, Furcht LT: A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells. American Journal of Pathology. 2001, 158: 639-646.
Li A, Dubey S, Varney ML, Dave BJ, Singh RK: IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. Journal of Immunology. 2003, 170: 3369-3376.
Huang S, Mills L, Mian B, Tellez C, McCarty M, Yang XD, Gudas JM, Bar-Eli M: Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. American Journal of Pathology. 2002, 161: 125-134.
Masuya D, Huang C, Liu D, Kameyama K, Hayashi E, Yamauchi A, Kobayashi S, Haba R, Yokomise H: The intratumoral expression of vascular endothelial growth factor and interleukin-8 associated with angiogenesis in nonsmall cell lung carcinoma patients. Cancer. 2001, 92: 2628-2638.
Kim SJ, Uehara H, Karashima T, McCarty M, Shih N, Fidler IJ: Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia (New York). 2001, 3: 33-42. 10.1038/sj.neo.7900124.
Rofstad EK, Halsor EF: Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Research. 2000, 60: 4932-4938.
Inoue K, Slaton JW, Eve BY, Kim SJ, Perrotte P, Balbay MD, Yano S, Bar-Eli M, Radinsky R, Pettaway CA, Dinney CP: Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clinical Cancer Research. 2000, 6: 2104-2119.
Fujimoto J, Sakaguchi H, Aoki I, Tamaya T: Clinical implications of expression of interleukin 8 related to angiogenesis in uterine cervical cancers. Cancer Research. 2000, 60: 2632-2635.
Nurnberg W, Tobias D, Otto F, Henz BM, Schadendorf D: Expression of interleukin-8 detected by in situ hybridization correlates with worse prognosis in primary cutaneous melanoma.[comment]. Journal of Pathology. 1999, 189: 546-551.
Retzlaff S, Padro T, Koch P, Oelmann E, Lugering N, Mesters RM, Berdel WE: Interleukin 8 and Flt3 ligand as markers of advanced disease in primary gastrointestinal non-Hodgkin's lymphoma. Oncology Reports. 2002, 9: 525-527.
Orditura M, De Vita F, Catalano G, Infusino S, Lieto E, Martinelli E, Morgillo F, Castellano P, Pignatelli C, Galizia G: Elevated serum levels of interleukin-8 in advanced non-small cell lung cancer patients: relationship with prognosis. Journal of Interferon & Cytokine Research. 2002, 22: 1129-1135.
Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M: Multiple control of interleukin-8 gene expression. Journal of Leukocyte Biology. 2002, 72: 847-855.
Takaya H, Andoh A, Shimada M, Hata K, Fujiyama Y, Bamba T: The expression of chemokine genes correlates with nuclear factor-kappaB activation in human pancreatic cancer cell lines. Pancreas. 2000, 21: 32-40.
Huang S, DeGuzman A, Bucana CD, Fidler IJ: Level of interleukin-8 expression by metastatic human melanoma cells directly correlates with constitutive NF-kappaB activity. Cytokines, Cellular & Molecular Therapy. 2000, 6: 9-17.
Pahl HL, Baeuerle PA: The ER-overload response: activation of NF-kappa B. Trends in Biochemical Sciences. 1997, 22: 63-67.
Yuan Y, Beitner-Johnson D, Millhorn DE: Hypoxia-inducible factor 2alpha binds to cobalt in vitro. Biochemical & Biophysical Research Communications. 2001, 288: 849-854. 10.1006/bbrc.2001.5835.
Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992, 359: 843-845.
Vukovic V, Haugland HK, Nicklee T, Morrison AJ, Hedley DW: Hypoxia-inducible factor-1alpha is an intrinsic marker for hypoxia in cervical cancer xenografts. Cancer Research. 2001, 61: 7394-7398.
Richard DE, Berra E, Pouyssegur J: Angiogenesis: how a tumor adapts to hypoxia. Biochemical & Biophysical Research Communications. 1999, 266: 718-722. 10.1006/bbrc.1999.1889.
Brown JM, Giaccia AJ: The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Research. 1998, 58: 1408-1416.
Griffiths JR, McSheehy PM, Robinson SP, Troy H, Chung YL, Leek RD, Williams KJ, Stratford IJ, Harris AL, Stubbs M: Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1beta (HIF-1beta): evidence of an anabolic role for the HIF-1 pathway. Cancer Research. 2002, 62: 688-695.
Shi Q, Xiong Q, Le X, Xie K: Regulation of interleukin-8 expression by tumor-associated stress factors. Journal of Interferon & Cytokine Research. 2001, 21: 553-566.
Karashima T, Sweeney P, Kamat A, Huang S, Kim SJ, Bar-Eli M, McConkey DJ, Dinney CP: Nuclear factor-kappaB mediates angiogenesis and metastasis of human bladder cancer through the regulation of interleukin-8. Clinical Cancer Research. 2003, 9: 2786-2797.
Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, Wek RC: Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Molecular and cell Biology. 2003, 23: 5651-5663.
Shweiki D, Neeman M, Itin A, Keshet E: Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 1995, 92: 768-772.
Collins CL, Wasa M, Souba WW, Abcouwer SF: Determinants of glutamine dependence and utilization by normal and tumor-derived breast cell lines. Journal of Cell Physiology. 1998, 176: 166-178.
Collins CL, Wasa M, Souba WW, Abcouwer SF: Regulation of glutamine synthetase in human breast carcinoma cells and experimental tumors. Surgery. 1997, 122: 451-63; discussion 463-4.
Song MS, Park YK, Lee JH, Park K: Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-epsilon/ERK/AP-1 signaling cascade. Cancer Research. 2001, 61: 8322-8330.
Chomcynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162: 156-159.
Abcouwer SF, Schwarz C, Meguid RA: Glutamine deprivation induces the expression of GADD45 and GADD153 primarily by mRNA stabilization. J. Biol. Chem. 1999, 274: 28645-28651.