Expression of genes encoding mineralocorticoid biosynthetic enzymes and the mineralocorticoid receptor, and levels of mineralocorticoids in the bovine follicle and corpus luteum

Journal of Reproduction and Development - Tập 66 Số 1 - Trang 75-81 - 2020
Memory MUKANGWA1, Koki Takizawa1, You Aoki1, Seizo HAMANO2, Masafumi Tetsuka1
1Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
2Maebashi Institute of Animal Science, Livestock Improvement Association of Japan Inc., Gunma 371-0121, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

1. Ogishima T, Shibata H, Shimada H, Mitani F, Suzuki H, Saruta T, Ishimura Y. Aldosterone synthase cytochrome P-450 expressed in the adrenals of patients with primary aldosteronism. <i>J Biol Chem</i> 1991; 266: 10731–10734.

2. Curnow KM, Tusie-Luna M-T, Pascoe L, Natarajan R, Gu J-L, Nadler JL, White PC. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. <i>Mol Endocrinol</i> 1991; 5: 1513–1522.

3. Bülow HE, Bernhardt R. Analyses of the CYP11B gene family in the guinea pig suggest the existence of a primordial CYP11B gene with aldosterone synthase activity. <i>Eur J Biochem</i> 2002; 269: 3838–3846.

4. Bülow HE, Möbius K, Bähr V, Bernhardt R. Molecular cloning and functional expression of the cytochrome P450 11B-hydroxylase of the guinea pig. <i>Biochem Biophys Res Commun</i> 1996; 221: 304–312.

5. Domalik LJ, Chaplin DD, Kirkman MS, Wu RC, Liu WW, Howard TA, Seldin MF, Parker KL. Different isozymes of mouse 11 beta-hydroxylase produce mineralocorticoids and glucocorticoids. <i>Mol Endocrinol</i> 1991; 5: 1853–1861.

6. Ohnishi T, Wada A, Nonaka Y, Sugiyama T, Yamano T, Okamoto M. Effect of calmodulin on aldosterone synthesis by a cytochrome P-450 11β-reconstituted system from bovine adrenocortical mitochondria. <i>J Biochem</i> 1986; 100: 1065–1076.

7. Yanagibashi K, Haniu M, Shively JE, Shen WH, Hall P. The synthesis of aldosterone by the adrenal cortex. Two zones (fasciculata and glomerulosa) possess one enzyme for 11 beta-, 18-hydroxylation, and aldehyde synthesis. <i>J Biol Chem</i> 1986; 261: 3556–3562.

8. Boon WC, Roche PJ, Hammond VE, Jeyaseelan K, Crawford RJ, Coghlan JP. Cloning and expression analysis of a cytochrome P-450(11 beta) cDNA in sheep. <i>Biochim Biophys Acta</i> 1995; 1260: 109–112.

9. Taves MD, Gomez-Sanchez CE, Soma KK. Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. <i>Am J Physiol Endocrinol Metab</i> 2011; 301: E11–E24.

10. Fru KN, VandeVoort CA, Chaffin CL. Mineralocorticoid synthesis during the periovulatory interval in macaques. <i>Biol Reprod</i> 2006; 75: 568–574.

11. Amweg AN, Rodríguez FM, Huber E, Marelli BE, Gareis NC, Belotti EM, Rey F, Salvetti NR, Ortega HH. Detection and activity of 11 beta hydroxylase (CYP11B1) in the bovine ovary. <i>Reproduction</i> 2017; 153: 433–441.

12. Sneeringer R, Penzias AS, Barrett B, Usheva A. High levels of mineralocorticoids in preovulatory follicular fluid could contribute to oocyte development. <i>Fertil Steril</i> 2011; 95: 182–187.

13. Amin M, Simerman A, Cho M, Singh P, Briton-Jones C, Hill D, Grogan T, Elashoff D, Clarke NJ, Chazenbalk GD, Dumesic DA. 21-Hydroxylase-derived steroids in follicles of nonobese women undergoing ovarian stimulation for in vitro fertilization (IVF) positively correlate with lipid content of luteinized granulosa cells (LGCs) as a source of cholesterol for steroid synthesis. <i>J Clin Endocrinol Metab</i> 2014; 99: 1299–1306.

14. Gomez-Sanchez EP, Gomez-Sanchez MT, de Rodriguez AF, Romero DG, Warden MP, Plonczynski MW, Gomez-Sanchez CE. Immunohistochemical demonstration of the mineralocorticoid receptor, 11beta-hydroxysteroid dehydrogenase-1 and -2, and hexose-6-phosphate dehydrogenase in rat ovary. <i>J Histochem Cytochem</i> 2009; 57: 633–641.

15. Tetsuka M, Milne M, Simpson GE, Hillier SG. Expression of 11β-hydroxysteroid dehydrogenase, glucocorticoid receptor, and mineralocorticoid receptor genes in rat ovary. <i>Biol Reprod</i> 1999; 60: 330–335.

16. Robert C, Barnes FL, Hue I, Sirard M-A. Subtractive hybridization used to identify mRNA associated with the maturation of bovine oocytes. <i>Mol Reprod Dev</i> 2000; 57: 167–175.

17. Tetsuka M, Kashima A. Mineralocorticoid modulates bovine oocyte nuclear maturation through mineralocorticoid receptor. <i>In</i>: Program of the 4th World Congress of Reproductive Biology; 2017; Okinawa, Japan. Abstract P1-47.

18. Tetsuka M, Nishimoto H, Miyamoto A, Okuda K, Hamano S. Gene expression of 11β-HSD and glucocorticoid receptor in the bovine (Bos taurus) follicle during follicular maturation and atresia: the role of follicular stimulating hormone. <i>J Reprod Dev</i> 2010; 56: 616–622.

19. Ireland JJ, Murphee RL, Coulson PB. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. <i>J Dairy Sci</i> 1980; 63: 155–160.

20. Murasawa M, Takahashi T, Nishimoto H, Yamamoto S, Hamano S, Tetsuka M. Relationship between ovarian weight and follicular population in heifers. <i>J Reprod Dev</i> 2005; 51: 689–693.

21. Nishimoto H, Hamano S, Hill GA, Miyamoto A, Tetsuka M. Classification of bovine follicles based on the concentrations of steroids, glucose and lactate in follicular fluid and the status of accompanying follicles. <i>J Reprod Dev</i> 2009; 55: 219–224.

22. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. <i>BMC Bioinformatics</i> 2012; 13: 134.

23. Bijault C, Dehennin L. Steroid 21-hydroxylase activity in equine ovarian follicles evidenced by isotope dilution-mass spectrometry. <i>J Steroid Biochem Mol Biol</i> 1991; 38: 165–172.

24. Yazawa T, Uesaka M, Inaoka Y, Mizutani T, Sekiguchi T, Kajitani T, Kitano T, Umezawa A, Miyamoto K. Cyp11b1 is induced in the murine gonad by luteinizing hormone/human chorionic gonadotropin and involved in the production of 11-ketotestosterone, a major fish androgen: conservation and evolution of the androgen metabolic pathway. <i>Endocrinology</i> 2008; 149: 1786–1792.

25. Amweg AN, Paredes A, Salvetti NR, Lara HE, Ortega HH. Expression of melanocortin receptors mRNA, and direct effects of ACTH on steroid secretion in the bovine ovary. <i>Theriogenology</i> 2011; 75: 628–637.

26. Summers AF, Pohlmeier WE, Sargent KM, Cole BD, Vinton RJ, Kurz SG, McFee RM, Cushman RA, Cupp AS, Wood JR. Altered theca and cumulus oocyte complex gene expression, follicular arrest and reduced fertility in cows with dominant follicle follicular fluid androgen excess. <i>PLoS One</i> 2014; 9: e110683.

27. Wise TH, Sorensen AM Jr, Fleeger JL. Quantitation of deoxycorticosterone and its relationship to progesterone in the prepartum bovine. <i>Steroids</i> 1975; 26: 17–28.

28. Roussel JD, Clement TJ, Aranas TJ. Changes of aldosterone in blood serum of dairy cattle during estrous cycle. <i>J Dairy Sci</i> 1983; 66: 1734–1737.

29. Tetsuka M, Takagi R, Ambo N, Myat TS, Zempo Y, Onuma A. Glucocorticoid metabolism in the bovine cumulus-oocyte complex matured in vitro. <i>Reproduction</i> 2016; 151: 73–82.

30. Schauser KH, Nielsen AH, Winther H, Dantzer V, Poulsen K. Localization of the renin-angiotensin system in the bovine ovary: cyclic variation of the angiotensin II receptor expression. <i>Biol Reprod</i> 2001; 65: 1672–1680.

31. Nogueira EF, Xing Y, Morris CAV, Rainey WE. Role of angiotensin II-induced rapid response genes in the regulation of enzymes needed for aldosterone synthesis. <i>J Mol Endocrinol</i> 2009; 42: 319–330.

32. Gonçalves PB, Ferreira R, Gasperin B, Oliveira JF. Role of angiotensin in ovarian follicular development and ovulation in mammals: a review of recent advances. <i>Reproduction</i> 2012; 143: 11–20.

33. Acosta TJ, Ozawa T, Kobayashi S, Hayashi K, Ohtani M, Kraetzl WD, Sato K, Schams D, Miyamoto A. Periovulatory changes in the local release of vasoactive peptides, prostaglandin f(2α), and steroid hormones from bovine mature follicles in vivo. <i>Biol Reprod</i> 2000; 63: 1253–1261.