Biểu hiện của một Protein liên quan đến Căng thẳng A20/AN1 từ Aeluropus littoralis trong Lúa làm mất cân bằng gen liên quan đến Căng thẳng

Journal of Plant Growth Regulation - Tập 41 - Trang 848-862 - 2021
Walid Ben Romdhane1,2, Rania Ben Saad2, Donaldo Meynard3,4, Nabil Zouari2, Mohamed Tarroum5, Ahmed Ali1, Gaëtan Droc3,4, Christophe Périn3,4, Jean-Benoît Morel6,4, Lotfi Fki7, Abdullah Al-Doss1, Emmanuel Guiderdoni3,4, Afif Hassairi1,2
1Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
2Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
3CIRAD, UMR AGAP, Montpellier Cedex 5, France
4Université de Montpellier, CIRAD, INRAE, SupAgro, Montpellier, France
5Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
6INRAE, UMR BGPI, Montpellier Cedex 5, France
7Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia

Tóm tắt

Gen AlSAP, được tách chiết từ cỏ halophyte C4 Aeluropus littoralis, là một thành viên của họ gen protein liên quan đến căng thẳng. Giống như các thành viên khác trong họ này, AlSAP chứa các miền ngón kẽm A20 và AN1, và sự phiên mã của nó bị tác động bởi các căng thẳng vô sinh như độ mặn, hạn hán và nhiệt độ, cũng như bởi một số hormone, bao gồm acid abscisic và acid salicylic. Thêm vào đó, việc dư thừa biểu hiện AlSAP trong lúa đã cho thấy nâng cao khả năng chịu đựng căng thẳng do lạnh và hạn hán. Trong nghiên cứu này, chúng tôi đã điều tra sự rối loạn phiên mã của các gen liên quan đến căng thẳng sau khi biểu hiện ngoài nội bộ gen AlSAP ở hai dòng lúa chuyển gen, cụ thể là RN4 và RN5. So với các cây đối chứng, tổng cộng 1734 và 3650 gen đã được chú thích được tìm thấy là biểu hiện khác biệt trong lá và rễ của các dòng RN4 và RN5, tương ứng. Tích lũy phiên bản AlSAP đã kích hoạt biểu hiện của các gen liên quan đến căng thẳng vô sinh liên quan đến phiên mã, tín hiệu, phân hủy protein và cân bằng hormone trong các cây lúa được trồng trong điều kiện không có căng thẳng. Chúng tôi giả thuyết rằng sự kích hoạt này là cơ sở cho khả năng chịu đựng tăng cường đối với các căng thẳng vô sinh mà các dòng AlSAP trước đó đã báo cáo. Đáng chú ý, AlSAP cũng kích hoạt sự tích lũy phiên bản của các gen đã biết là các yếu tố điều tiết tiêu cực chính trong phản ứng với tác nhân gây bệnh ở lúa. Nhất quán với điều đó, kết quả của chúng tôi cho thấy rằng các dòng lúa AlSAP chịu đựng stress vô sinh cũng cho thấy độ nhạy cảm tăng cường đối với nấm bệnh cháy lúa Magnaporthe oryzae.

Từ khóa

#AlSAP #Aeluropus littoralis #căng thẳng vô sinh #lúa #protein liên quan đến căng thẳng #gene trên tác nhân gây bệnh #khả năng chịu đựng.

Tài liệu tham khảo

Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H et al (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36 Bae H, Kim SK, Cho SK, Kang BG, Kim WT (2011) Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci 180:775–782 Ben Saad R, Ben Ramdhan W, Zouari N, Azaza J, Mieulet D, Guiderdoni E, Ellouz R et al (2011) Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Mol Breed 30:521–533 Ben Saad R, Fabre D, Mieulet D, Meynard D, Dingkuhn M, Al-Doss A, Guiderdoni E et al (2012) Expression of the Aeluropus littoralis AlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis. Plant Cell Environ 35:626–643 Ben Saad R, Meynard D, Ben Romdhane W, Mieulet D, Verdeil JL, Al Doss A, Guiderdoni E et al (2015) The promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs a stress-inducible expression pattern in transgenic rice plants. Plant Cell Rep 34:1791–1806 Ben Saad R, Zouari N, Ben Ramdhan W, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72:171–190 Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun MH, Tharreau D (2003) Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet 107:1139–1147 Bundo M, Coca M (2016) Enhancing blast disease resistance by overexpression of the calcium-dependent protein kinase OsCPK4 in rice. Plant Biotechnol J 14:1357–1367 Chae K, Isaacs CG, Reeves PH, Maloney GS, Muday GK, Nagpal P, Reed JW (2012) Arabidopsis small auxin up RNA63 promotes hypocotyl and stamen filament elongation. Plant J 71:684–697 Chapagain S, Park Y, Jang C (2017) Functional diversity of RING E3 ligases of major cereal crops in response to abiotic stresses. J Crop Sci Biotechnol 20:351–357 Charrier A, Planchet E, Cerveau D, Gimeno-Gilles C, Verdu I, Limami AM, Lelievre E (2012) Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco. Planta 236:567–577 Cho SK, Ryu MY, Kim JH, Hong JS, Oh TR, Kim WT, Yang SW (2017) RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants. BMB Rep 50:393–400 Cui LH, Min HJ, Byun MY, Oh HG, Kim WT (2018) OsDIRP1, a Putative RING E3 Ligase, plays an opposite role in drought and cold stress responses as a negative and positive factor, respectively, in rice (Oryza sativa L.). Front Plant Sci 9:1797 Dansana PK, Kothari KS, Vij S, Tyagi AK (2014) OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Rep 33:1425–1440 Datta K, Baisakh N, Ganguly M, Krishnan S, Yamaguchi Shinozaki K, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10:579–586 Dievart A, Perin C, Hirsch J, Bettembourg M, Lanau N, Artus F, Bureau C et al (2016) The phenome analysis of mutant alleles in leucine-rich repeat receptor-like kinase genes in rice reveals new potential targets for stress tolerant cereals. Plant Sci 242:240–249 Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240 Domingo C, Andres F, Tharreau D, Iglesias DJ, Talon M (2009) Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol Plant Microbe Interact 22:201–210 Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63:6467–6480 Fang H, Meng Q, Xu J, Tang H, Tang S, Zhang H, Huang J (2015) Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice. Plant Mol Biol 87:441–458 Fu J, Yu H, Li X, Xiao J, Wang S (2011) Rice GH3 gene family: regulators of growth and development. Plant Signal Behav 6:570–574 Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H et al (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76:145–156 Ghneim-Herrera T, Selvaraj MG, Meynard D, Fabre D, Pena A, Ben Romdhane W, Ben Saad R et al (2017) Expression of the Aeluropus littoralis AlSAP gene enhances rice yield under field drought at the reproductive stage. Front Plant Sci 8:994 Giri J, Dansana PK, Kothari KS, Sharma G, Vij S, Tyagi AK (2013) SAPs as novel regulators of abiotic stress response in plants. BioEssays 35:639–648 Giri J, Vij S, Dansana PK, Tyagi AK (2011) Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191:721–732 Hong G, Zhang W, Li H, Shen X, Guo Z (2013) Separate enrichment analysis of pathways for up- and down-regulated genes. J R Soc Interface 11:6 Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992 Huang J, Wang MM, Jiang Y, Bao YM, Huang X, Sun H, Xu DQ et al (2008) Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene 420:135–144 Ismail AM, Ella ES, Vergara GV, Mackill DJ (2009) Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann Bot 103:197–209 Jackson MB (2008) Ethylene-promoted elongation: an adaptation to submergence stress. Ann Bot 101:229–248 Jin Y, Wang M, Fu J, Xuan N, Zhu Y, Lian Y, Jia Z et al (2007) Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics 90:265–275 Jing SJ, Zhou X, Song Y, Yu DQ (2009) Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis. Plant Growth Regul 58:181–190 Kang M, Abdelmageed H, Lee S, Reichert A, Mysore KS, Allen RD (2013) AtMBP-1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5. Plant J 76:481–493 Kang M, Fokar M, Abdelmageed H, Allen RD (2011) Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol Biol 75:451–466 Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462 Kant S, Bi YM, Zhu T, Rothstein SJ (2009) SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151:691–701 Khan NA, Khan MIR, Ferrante A, Poor P (2017) Editorial: Ethylene: a key regulatory molecule in plants. Front Plant Sci 8:1782 Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760 Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595 Lim SD, Lee C, Jang CS (2014) The rice RING E3 ligase, OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1, and its overexpression confers drought tolerance in Arabidopsis. Plant Cell Environ 37:1097–1113 Liu J, Zhang C, Wei C, Liu X, Wang M, Yu F, Xie Q et al (2016a) The RING Finger Ubiquitin E3 Ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol 170:429–443 Liu LP, Zhang ZQ, Dong JL, Wang T (2016b) Overexpression of MtWRKY76 increases both salt and drought tolerance in Medicago truncatula. Environ Exp Bot 123:50–58 Liu Y, Xu Y, Xiao J, Ma Q, Li D, Xue Z, Chong K (2011) OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice. J Plant Physiol 168:1098–1105 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408 Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550 Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103:181–196 Mawlong I, Ali K, Srinivasan R, Rai RD, Tyagi A (2015) Functional validation of a drought-responsive AP2/ERF family transcription factor-encoding gene from rice in Arabidopsis. Mol Breed 35:163 Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101:6309–6314 Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723 Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M et al (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707 Qiu T, Qi M, Ding X, Zheng Y, Zhou T, Chen Y, Han N et al (2019) The SAUR41 subfamily of small auxin up RNA genes is abscisic acid-inducible to modulate cell expansion and salt tolerance in Arabidopsis thaliana seedlings. Ann Bot 125:805–819 Qiu YP, Yu DQ (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47 Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842 Ren H, Gray WM (2015) SAUR Proteins as effectors of hormonal and environmental signals in plant growth. Mol Plant 8:1153–1164 Seo YS, Chern M, Bartley LE, Han M, Jung KH, Lee I, Walia H et al (2011) Towards establishment of a rice stress response interactome. PLoS Genet 7:e1002020 Serrano I, Campos L, Rivas S (2018) Roles of E3 ubiquitin-ligases in nuclear protein homeostasis during plant stress responses. Front Plant Sci 9:139 Sharma G, Giri J, Tyagi AK (2015) Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water-deficit stress in Arabidopsis. Plant Sci 237:80–92 Song J, Xing Y, Munir S, Yu C, Song L, Li H, Wang T, Ye Z (2016) An ATL78-Like RING-H2 finger protein confers abiotic stress tolerance through interacting with RAV2 and CSN5B in Tomato. Front Plant Sci 7:1305 Song Y, Chen LG, Zhang LP, Yu DQ (2010) Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis. J Biosci 35:459–471 Song Y, Jing SJ, Yu DQ (2009) Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis. Chin Sci Bull 54:4671–4678 Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H, Inze D, Peer WA et al (2012) The SAUR19 subfamily of small auxin up RNA genes promote cell expansion. Plant J 70:978–990 Stroher E, Wang XJ, Roloff N, Klein P, Husemann A, Dietz KJ (2009) Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Mol plant 2:357–367 Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43 Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939 Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W et al (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129 Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M (2009) A guide to using MapMan to visualize and compare omics data in plants: a case study in the crop species, Maize. Plant Cell Environ 32:1211–1229 Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86 Vij S, Tyagi AK (2006) Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genom 276:565–575 Vij S, Tyagi AK (2008) A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct Integr Genom 8:301–307 Wang F, Coe RA, Karki S, Wanchana S, Thakur V, Henry A, Lin HC et al (2016) Overexpression of OsSAP16 regulates photosynthesis and the expression of a broad range of stress response genes in rice (Oryza sativa L.). PLoS ONE 11:e0157244 Xia Y, Yin SJ, Zhang KL, Shi XT, Lian CL, Zhang HS, Hu ZB et al (2018) OsWAK11, a rice wall-associated kinase, regulates Cu detoxification by alteration the immobilization of Cu in cell walls. Environ Exp Bot 150:99–105 Xu YX, Xiao MZ, Liu Y, Fu JL, He Y, Jiang DA (2017) The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice. Plant Mol Biol 94:97–107 Yang A, Dai XY, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556 Ye Y, Ding Y, Jiang Q, Wang F, Sun J, Zhu C (2017) The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep 36:235–242 Yin XY, Hou XW (2017) role of OsWAK124, a rice wall-associated kinase, in response to environmental heavy metal stresses. Pak J Bot 49:1255–1261 Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y (2013) WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot 64:5085–5097 Yu Y, Yang D, Zhou S, Gu J, Wang F, Dong J, Huang R (2017) The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma 254:401–408 Zahur M, Maqbool A, Irfan M, Jamal A, Shahid N, Aftab B, Husnain T (2012) Identification and characterization of a novel gene encoding myb-box binding zinc finger protein in Gossypium arboreum. Biol Plant 56:641–647 Zhang N, Yin Y, Liu X, Tong S, Xing J, Zhang Y, Pudake RN et al (2017) The E3 Ligase TaSAP5 alters drought stress responses by promoting the degradation of DRIP proteins. Plant Physiol 175:1878–1892 Zhang Y, Lan H, Shao Q, Wang R, Chen H, Tang H, Zhang H et al (2016) An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). J Exp Bot 67:315–326 Zhu N, Cheng SF, Liu XY, Du H, Dai MQ, Zhou DX, Yang WJ et al (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156 Zouari N, Ben Saad R, Legavre T, Azaza J, Sabau X, Jaoua M, Masmoudi K et al (2007) Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene 404:61–69