Expression of Carotenoid Biosynthesis Genes during the Long-Term Cold Storage of Potato Tubers

А. В. Кулакова1, А. В. Щенникова1, Е. З. Кочиева1
1Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Howitt, C.A. and Pogson, B.J., Carotenoid accumulation and function in seeds and non-green tissues, Plant, Cell Environ., 2006, vol. 29, pp. 435—445. https://doi.org/10.1111/j.1365-3040.2005.01492.x

Lopez, A.B., Van Eck, J., Conlin, B.J., et al., Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers, J. Exp. Bot., 2008, vol. 59, no. 2, pp. 213—223. https://doi.org/10.1093/jxb/erm299

Wurtzel, E.T., Chapter five Genomics, genetics, and biochemistry of maize carotenoid biosynthesis, Recent Advances in Phytochemistry, Romeo, J., Ed. 2004, vol. 38, pp. 85—110. https://doi.org/10.1016/S0079-9920(04)80006-6

Brown, C.R., Culley, C., Yang, C.P., et al., Variation of anthocyanin and carotenoid contents and associated antioxidant values in potato breeding lines, J. Am. Soc. Hortic. Sci., 2005, vol. 130, pp. 174—180. https://doi.org/10.21273/JASHS.130.2.174

Rosas-Saavedra, C. and Stange, C., Biosynthesis of carotenoids in plants: enzymes and color, Subcell. Biochem., 2016, vol. 79, pp. 35—69. https://doi.org/10.1007/978-3-319-39126-7_2

Dhar, M.K., Mishra, S., Bhat, A., et al., Plant carotenoid cleavage oxygenases: structure—function relationships and role in development and metabolism, Brief Funct. Genomics, 2020, vol. 19, no. 1, pp. 1—9. https://doi.org/10.1093/bfgp/elz037

Huang, X., Shi, H., Hu, Z., et al., ABA is involved in regulation of cold stress response in Bermudagrass, Front. Plant Sci., 2017, vol. 8, р. 2017. https://doi.org/10.3389/fpls.2017.01613

Nambara, E. and Marion-Poll, A., Abscisic acid biosynthesis and catabolism, Annu. Rev. Plant Biol., 2005, vol. 56, pp. 165—185. https://doi.org/10.1146/annurev.arplant.56.032604.144046

Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., et al., Abscisic acid: emergence of a core signaling network, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 651—679. https://doi.org/10.1146/annurev-arplant-042809-112122

Fujisawa, M., Watanabe, M., Choi, S.K., et al., Enrichment of carotenoids in flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB, J. Biosci. Bioeng., 2008, vol. 105, no. 6, pp. 636—641. https://doi.org/10.1263/jbb.105.636

Maass, D., Arango, J., Wüst, F., et al., Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels, PLoS One, 2009, vol. 4, р. 6373. https://doi.org/10.1371/journal.pone.0006373

Naqvi, S., Zhu, C., Farre, G., et al., Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 19, pp. 7762—7767. https://doi.org/10.1073/pnas.0901412106

Ampomah-Dwamena, C., Tomes, S., Thrimawithana, A.H., et al., Overexpression of PSY1 increases fruit skin and flesh carotenoid content and reveals associated transcription factors in apple (Malus × domestica), Front. Plant Sci., 2022, vol. 13, р. 967143. https://doi.org/10.3389/fpls.2022.967143

Fraser, P.D., Romer, S., Shipton, C.A., et al., Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 2, pp. 1092—1097. https://doi.org/10.1073/pnas.241374598

Ducreux, L.J., Morris, W.L., Hedley, P.E., et al., Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein, J. Exp. Bot., 2005, vol. 56, no. 409, pp. 81—89. https://doi.org/10.1093/jxb/eri016

Diretto, G., Tavazza, R., Welsch, R., et al., Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase, BMC Plant Biol., 2006, vol. 6, р. 13. https://doi.org/10.1186/1471-2229-6-13

Harjes, C.E., Rocheford, T.R., Bai, L., et al., Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification, Science, 2008, vol. 319, no. 5861, pp. 330—333. https://doi.org/10.1126/science.1150255

Yu, B., Lydiate, D.J., Young, L.W., et al., Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase, Transgenic Res., 2008, vol. 17, no. 4, pp. 573—585. https://doi.org/10.1007/s11248-007-9131-x

Zunjare, R.U., Chhabra, R., Hossain, F., et al., Molecular characterization of 5' UTR of the lycopene epsilon cyclase (lcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification, 3 Biotech, 2018, vol. 8, no. 1, р. 75. https://doi.org/10.1007/s13205-018-1100-y

Zhu, K., Zheng, X., Ye, J., et al., Building the synthetic biology toolbox with enzyme variants to expand opportunities for biofortification of provitamin A and other health-promoting carotenoids, J. Agric. Food Chem., 2020, vol. 68, no. 43, pp. 12048—12057. https://doi.org/10.1021/acs.jafc.0c04740

Ye, X., Al-Babili, S., Klöti, A., et al., Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm, Science, 2000, vol. 287, no. 5451, pp. 303—305. https://doi.org/10.1126/science.287.5451.303

Paine, J.A., Shipton, C.A., Chaggar, S., et al., Improving the nutritional value of golden rice through increased pro-vitamin A content, Nat. Biotechnol., 2005, vol. 23, no. 4, pp. 482—487. https://doi.org/10.1038/nbt1082

D’Ambrosio, C., Giorio, G., Marino, I., et al., Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA, Plant Sci., 2004, vol. 166, pp. 207—214. https://doi.org/10.1016/j.plantsci.2003.09.015

Gerjets, T. and Sandmann, G., Ketocarotenoid formation in transgenic potato, J. Exp. Bot., 2006, vol. 57, no. 14, pp. 3639—3645. https://doi.org/10.1093/jxb/erl103

Arnoux, P., Morosinotto, T., Saga, G., et al., A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana, Plant Cell, 2009, vol. 21, no. 7, pp. 2036—2044. https://doi.org/10.1105/tpc.109.068007

Pastori, G.M., Kiddle, G., Antoniw, J., et al., Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling, Plant Cell, 2003, vol. 15, no. 4, pp. 939—951. https://doi.org/10.1105/tpc.010538

Tran, B.Q., Tran, L.H., Kim, S.J., et al., Altered regulation of porphyrin biosynthesis and protective responses to acifluorfen-induced photodynamic stress in transgenic rice expressing Bradyrhizobium japonicum Fe-chelatase, Pestic. Biochem. Physiol., 2019, vol. 159, pp. 1—8. https://doi.org/10.1016/j.pestbp.2019.05.017

Zita, W., Bressoud, S., Glauser, G., et al., Chromoplast plastoglobules recruit the carotenoid biosynthetic pathway and contribute to carotenoid accumulation during tomato fruit maturation, PLoS One, 2022, vol. 17, no. 12, р. e0277774. https://doi.org/10.1371/journal.pone.0277774

Zhang, Y.M., Wu, R.H., Wang, L., et al., Plastid diversity and chromoplast biogenesis in differently coloured carrots: role of the DcOR3 Leu gene, Planta, 2022, vol. 256, no. 6, р. 104. https://doi.org/10.1007/s00425-022-04016-9

Lu, S., Van Eck, J., Zhou, X., et al., The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation, Plant Cell, 2006, vol. 18, no. 12, pp. 3594—3605. https://doi.org/10.1105/tpc.106.046417

Sierra, J., McQuinn, R.P., and Leon, P., The role of carotenoids as a source of retrograde signals: impact on plant development and stress responses, J. Exp. Bot., 2022, vol. 73, no. 21, pp. 7139—7154. https://doi.org/10.1093/jxb/erac292

Eltawil, M.A., Samuel, D.K., and Singhal, O.P., Potato storage technology and store design aspects, Agric. Eng. Int.: CIGR J., 2006, vol. VIII, no. 11, pp. 1—18.

Brown, C.R., Edwards, C.G., Yang, C.P., et al., Orange flesh trait in potato—inheritance and carotenoid content, J. Am. Soc. Hortic. Sci., 1993, vol. 118, pp. 145—150. https://doi.org/10.21273/JASHS.118.1.145

Payyavula, R.S., Navarre, D.A., Kuhl, J.C., et al., Differential effects of environment on potato phenylpropanoid and carotenoid expression, BMC Plant Biol., 2012, vol. 12, р. 39. https://doi.org/10.1186/1471-2229-12-39

Fogelman, E., Oren-Shamir, M., Hirschberg, J., et al., Nutritional value of potato (Solanum tuberosum) in hot climates: anthocyanins, carotenoids, and steroidal glycoalkaloids, Planta, 2019, vol. 249, no. 4, pp. 1143—1155. https://doi.org/10.1007/s00425-018-03078-y

Haider, M.W., Nafees, M., Ahmad, I., et al., Postharvest dormancy-related changes of endogenous hormones in relation to different dormancy-breaking methods of potato (Solanum tuberosum L.) tubers, Front. Plant Sci., 2022, vol. 13, р. 945256. https://doi.org/10.3389/fpls.2022.945256

Wiberley-Bradford, A.E., Busse, J.S., Jiang, J., et al., Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin, BMC Res. Notes, 2014, vol. 7, р. 801. https://doi.org/10.1186/1756-0500-7-801

Efremov, G.I., Slugina, M.A., Shchennikova, A.V., et al., Differential regulation of phytoene synthase PSY1 during fruit carotenogenesis in cultivated and wild tomato species (Solanum section Lycopersicon), Plants, 2020, vol. 9, no. 9, р. 1169. https://doi.org/10.3390/plants9091169

Filyushin, M.A., Dzhos, E.A., Shchennikova, A.V., et al., Dependence of pepper fruit colour on basic pigments ratio and expression pattern of carotenoid and anthocyanin biosynthesis genes, Russ. J. Plant Physiol., 2020, vol. 67, no. 6, pp. 1054—1062. https://doi.org/10.1134/S1021443720050040

Lopez-Pardo, R., de Galarreta, J.I.R., and Ritter, E., Selection of housekeeping genes for qRT-PCR analysis in potato tubers under cold stress, Mol. Breed., 2013, vol. 31, no. 1, pp. 39—45. https://doi.org/10.1007/s11032-012-9766-z

Tang, X., Zhang, N., Si, H., et al., Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress, Plant Methods, 2017, vol. 13, no. 85, р. 85. https://doi.org/10.1186/s13007-017-0238-7

Nesterenko, S. and Sink, K.C., Carotenoid profiles of potato breeding lines and selected cultivars, Hortscience, 2003, vol. 38, pp. 1173—1177. https://doi.org/10.21273/HORTSCI.38.6.1173

Morris, W.L., Ducreux, L., Griffiths, D.W., et al., Carotenogenesis during tuber development and storage in potato, J. Exp. Bot., 2004, vol. 55, no. 399, pp. 975—982. https://doi.org/10.1093/jxb/erh121

Bartley, G.E., Viitanen, P.V., Bacot, K.O., et al., A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway, J. Biol. Chem., 1992, vol. 267, pp. 5036—5039. https://doi.org/10.1016/S0021-9258(18)42724-X

Bartley, G.E. and Scolnik, P.A., cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase, J. Biol. Chem., 1993, vol. 268, pp. 25718—25721. https://doi.org/10.1016/S0021-9258(19)74448-2

Pasare, S., Wright, K., Campbell, R., et al., The sub-cellular localisation of the potato (Solanum tuberosum L.) carotenoid biosynthetic enzymes, CrtRb2 and PSY2, Protoplasma, 2013, vol. 250, no. 6, pp. 1381—1392. https://doi.org/10.1007/s00709-013-0521-z

Stauder, R., Welsch, R., Camagna, M., et al., Strigolactone levels in dicot roots are determined by an ancestral symbiosis-regulated clade of the PHYTOENE SYNTHASE gene family, Front. Plant Sci., 2018, vol. 9, р. 255. https://doi.org/10.3389/fpls.2018.00255

Naing, A.H. and Kim, C.K., Abiotic stress-induced anthocyanins in plants: their role in tolerance to abiotic stresses, Physiol. Plant., 2021, vol. 172, no. 3, pp. 1711—1723. https://doi.org/10.1111/ppl.13373

Destefano-Beltrán, L., Knauber, D., Huckle, L., et al., Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues, Plant Mol. Biol., 2006, vol. 61, nos. 4—5, pp. 687—697. https://doi.org/10.1007/s11103-006-0042-7

Welsch, R., Zhou, X., Yuan, H., et al., Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in Arabidopsis, Mol. Plant, 2018, vol. 11, no. 1, pp. 149—162. https://doi.org/10.1016/j.molp.2017.11.003

Osorio, C.E., The role of Orange gene in carotenoid accumulation: manipulating chromoplasts toward a colored future, Front. Plant Sci., 2019, vol. 10, р. 1235. https://doi.org/10.3389/fpls.2019.01235

Tzuri, G., Zhou, X., Chayut, N., et al., A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo), Plant J., 2015, vol. 82, pp. 267—279. https://doi.org/10.1111/tpj.12814

Yuan, H., Owsiany, K., Sheeja, T.E., et al., A single amino acid substitution in an ORANGE protein promotes carotenoid overaccumulation in Arabidopsis, Plant Physiol., 2015, vol. 169, no. 1, pp. 421—431. https://doi.org/10.1104/pp.15.00971