Biểu hiện và tinh chế một đoạn kháng thể biến đổi chuỗi đơn chống virus gây bệnh lở mồm long móng trong cây thuốc lá

Transgenic Research - Tập 18 - Trang 685-696 - 2009
J. J. Joensuu1,2, K. D. Brown1, A. J. Conley1,3, A. Clavijo4, R. Menassa1, J. E. Brandle1,5
1Agriculture and Agri-Food Canada, London, Canada
2VTT Technical Research Centre of Finland, Espoo, Finland
3Department of Biology, University of Western Ontario, London, Canada
4Canadian Food Inspection Agency, Winnipeg, Canada
5Vineland Research and Innovation Centre, Vineland Station, Canada

Tóm tắt

Các kháng thể tái tổ hợp giá rẻ có thể cung cấp một chiến lược mới để kiểm soát các vụ bùng phát virus gây bệnh lở mồm long móng (FMDV) thông qua việc miễn dịch thụ động cho các động vật nhạy cảm. Trong nghiên cứu này, một đoạn kháng thể biến đổi chuỗi đơn (scFv) nhận diện protein vỏ virus FMDV VP1 đã được biểu hiện trong cây thuốc lá chuyển gen. Để tăng cường sự tích lũy của protein scFv, mã di truyền của gen scFv từ hybridoma chuột đã được điều chỉnh để mô phỏng các gen thuốc lá có biểu hiện cao, đồng thời được nối với một peptide elastin-like (ELP). Sự kết hợp scFv–ELP này đã tích lũy lên tới 0.8% tổng lượng protein hòa tan trong lá của cây thuốc lá chuyển gen. Để thu hồi protein scFv–ELP từ dịch chiết lá, một chiến lược tinh chế đơn giản và có thể mở rộng đã được thiết lập. Sự kết hợp scFv–ELP tinh khiết được cắt rời để tách phần scFv. Cuối cùng, các protein scFv tinh khiết đã chứng minh khả năng kết nối với FMDV trong điều kiện không có hoặc có sự hiện diện của sự kết hợp ELP.

Từ khóa

#Kháng thể tái tổ hợp #Virus gây bệnh lở mồm long móng #Protein vỏ virus #Cây thuốc lá chuyển gen #Tinh chế protein #Miễn dịch thụ động

Tài liệu tham khảo

Adang MJ, Brody MS, Cardineau G et al (1993) The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol Biol 21:1131–1145 Au LC, Yang FY, Yang WJ et al (1998) Gene synthesis by a LCR-based approach: high-level production of leptin-L54 using synthetic gene in Escherichia coli. Biochem Biophys Res Commun 248:200–203 Berry JD, Xuan X, Nicolas B et al (2004) Murine monoclonal antibody to Foot-and-mouth disease virus A24. Hybrid Hybridomics 23:198–199 Boevink P, Santa-Cruz S, Harris N et al (1996) Virus-mediated delivery of the green fluorescent protein to the endoplasmic reticulum of plant cells. Plant J 10:935–941 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254 Conley AJ, Joensuu JJ, Jevnikar AM et al. (2009a) Optimization of elastin-like polypeptide fusions for expression and purification of recombinant proteins in plants. Biotechnol Bioengineering (in press). doi:10.1002/bit.22278 Conley AJ, Mohib K, Jevnikar AM et al (2009b) Plant recombinant eryhtropoetin attenuates inflammatory kidney cell injury. Plant Biotechnol J 7:183–199 Cottam EM, Wadsworth J, Shaw AE et al. (2008) Transmission pathways of Foot-and-mouth disease virus in the United Kingdom in 2007. PLoS Pathog 4. doi:10.1317/1000050 Cutt JR, Dixon DC, Carr JP et al (1988) Isolation and nucleotide sequence of cDNA clones for the pathogenesis-related proteins PR1a, PR1b and PR1c of Nicotiana tabacum cv. Xanthi nc induced by TMV infection. Nucleic Acids Res 16:9861 Davies G (2002) The Foot and mouth disease (FMD) epidemic in the United Kingdom 2001. Comp Immunol Microbiol Infect Dis 25:331–343 Doel TR (2003) FMD vaccines. Virus Res 91:81–99 Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol 24:426–432 Ferris NP, Powell H, Donaldson AI (1988) Use of pre-coated immunoplates and freeze-dried reagents for the diagnosis of Foot-and-mouth disease and swine vesicular disease by enzyme-linked immunosorbent assay (ELISA). J Virol Methods 19:197–206 Floss DM, Sack M, Stadlmann J et al (2008) Biochemical and functional characterization of anti-HIV antibody–ELP fusion proteins from transgenic plants. Plant Biotechnol J 6:379–391 Grubman MJ, Baxt B (2004) Foot-and-Mouth Disease. Clin Microbiol Rev 17:465–493 Hobbs SLA, Kpodar P, DeLong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864 Hood EE, Gelvin SB, Melchers LS et al (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218 Horvath H, Huang J, Wong O et al (2000) The production of recombinant proteins in transgenic barley grains. PNAS 97:1914–1919 Jenny RJ, Mann KG, Lundblad RL (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Prot Exp Purif 31:1–11 Joensuu JJ, Niklander-Teeri V, Brandle JE (2008) Transgenic plants for animal health: plant-made vaccine antigens for animal infectious disease control. Phytochem Rev 7:553–577 Kang T, Loc N, Jang M et al (2004) Modification of the cholera toxin B subunit coding sequence to enhance expression in plants. Mol Breed 13:143–153 Kapila J, De Rycke R, Van Montagu M et al (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108 Kay R, Chan A, Daly M et al (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302 Krysan PJ, Young JC, Jester PJ et al (2002) Characterization of T-DNA insertion sites in Arabidopsis thaliana and the implications for saturation mutagenesis. OMICS 6:163–174 Kusnadi AR, Nikolov ZL, Howard JA et al (1997) Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol Bioeng 56:473–484 Lichty JJ, Malecki JL, Agnew HD et al (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41:98–105 Lin M, Rose-John S, Grötzinger J et al (2006) Functional expression of a biologically active fragment of soluble gp130 as an ELP-fusion protein in transgenic plants: purification via inverse transition cycling. Biochem J 398:577–583 Lonsdale DM, Moisan LJ, Harvey AJ (1998) The effect of altered codon usage on luciferase activity in tobacco, maize and wheat. Plant Cell Rep 17:396–399 Ma JKC, Drake PMW, Chargelegue D et al (2005) Antibody processing and engineering in plants, and new strategies for vaccine production. Vaccine 23:1814–1818 Menassa R, Nguyen V, Jevnikar A et al (2001) A self-contained system for the field production of plant recombinant interleukin-10. Mol Breed 8:177–185 Menkhaus TJ, Bai Y, Zhang C et al (2004) Considerations for the recovery of recombinant proteins from plants. Biotechnol Prog 20:1001–1014 Meyer DE, Chilkoti A (1999) Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol 17:1112–1115 Miki BLA, McHugh SG, Labbe H (1999) Transgenic tobacco: gene expression and applications. In: Bajaj YPS et al (eds) Biotechnology in agriculture and forestry: transgenic medicinal plants. Springer, Berlin, pp 336–354 Parks TD, Leuther KK, Howard ED et al (1994) Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal Biochem 216:413–417 Patel J, Zhu H, Menassa R et al (2007) Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 16:239–249 Peden JF (1999) Analysis of codon usage. Ph.D Thesis, University of Nottingham, England Perlak FJ, Fuchs RL, Dean DA et al (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. PNAS 88:3324–3328 Rouillard JM, Lee W, Truan G et al (2004) Gene2Oligo: oligonucleotide design for in vitro gene synthesis. Nucleic Acids Res 32:176–180 Rouwendal GJ, Mendes O, Wolbert EJ et al (1997) Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol Biol 33:989–999 Rymerson R, Menassa R, Brandle JE (2002) Tobacco, a platform for the production of recombinant proteins. In: Erickson L, Brandle J, Rymerson RT (eds) Molecular farming of plants and animals for human and veterinary medicine. Kluwer, Amsterdam, pp 1–32 Sawant SV, Singh PK, Gupta SK et al (1999) Conserved nucleotide sequences in highly expressed genes in plants. J Genet 78:123–131 Sawant S, Singh PK, Madanala R et al (2001) Designing of an artificial expression cassette for the high-level expression of transgenes in plants. Theor Appl Genet 102:635–644 Scheller J, Henggeler D, Viviani A et al (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51–57 Scheller J, Leps M, Conrad U (2006) Forcing single-chain variable fragment production in tobacco seeds by fusion to elastin-like polypeptides. Plant Biotechnol J 4:243–249 Schouten A, Roosien J, van Engelen JA et al (1996) The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol 30:781–793 Shamji MF, Betre H, Kraus VB et al (2007) Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: sustained release of a local antiinflammatory therapeutic. Arthritis Rheum 56:3650–3661 Shimazu M, Mulchandani A, Chen W (2003) Thermally triggered purification and immobilization of elastin–OPH fusions. Biotechnol Bioeng 81:74–79 Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15 Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533 Trabbic-Carlson K, Liu L, Kim B et al (2004) Expression and purification of recombinant proteins from Escherichia coli: comparison of an elastin-like polypeptide fusion with an oligohistidine fusion. Protein Sci 13:3274–3284 Twyman RM, Stoger E, Schillberg S et al (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578 Urry DW (1988) Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J Protein Chem 7:1–34 Urry DW (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J Phys Chem B 101:11007–11028 Voinnet O, Rivas S, Mestre P et al (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956 Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320 Yang PC, Chu RM, Chung WB et al (1999) Epidemiological characteristics and financial costs of the 1997 Foot-and-mouth disease epidemic in Taiwan. Vet Rec 145:731–734 Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551 Yang M, Berhane Y, Salo T et al (2008) Development and application of monoclonal antibodies against avian influenza virus nucleoprotein. J Virol Methods 147:265–274