Express Method for Isolation of Ready-to-Use 3D Chitin Scaffolds from Aplysina archeri (Aplysineidae: Verongiida) Demosponge

Marine Drugs - Tập 17 Số 2 - Trang 131
Christine Klinger1, Sonia Żółtowska‐Aksamitowska2,3, Marcin Wysokowski2,3, Mikhail V. Tsurkan4, Roberta Galli5, Iaroslav Petrenko3, Tomasz Machałowski2, Alexander Ereskovsky6,7, Rajko Martinović8, Л. В. Музычка9, О. Б. Смолий9, Nicole Bechmann10, Viatcheslav N. Ivanenko11,12, Peter J. Schupp13, Teofil Jesionowski2, Marco Giovine14, Yvonne Joseph3, Stefan R. Bornstein15,16, Alona Voronkina17, Hermann Ehrlich3
1Institute of Physical Chemistry, TU Bergakademie-Freiberg, Leipziger str. 29, 09559 Freiberg, Germany
2Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland
3Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599, Freiberg, Germany
4Leibnitz Institute of Polymer Research Dresden, 01069 Dresden, Germany
5Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
6Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 19992 Saint-Petersburg, Russia
7Institut Méditerranéen de Biodiversité et d’Ecologie (IMBE), CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d’Endoume, 13003 Marseille, France
8Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro
9Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str., 1, 02094 Kyiv, Ukraine
10Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
11Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
12Naturalis Biodiversity Center, 2332 Leiden, The Netherlands
13Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
14Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26 16132 Genova, Italy
15Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
16Diabetes and Nutritional Sciences Division, King’s College London, London WC2R 2LS, UK
17National Pirogov Memorial Medical University, Vinnytsya, Department of Pharmacy, Pirogov str. 56, 21018, Vinnytsia, Ukraine

Tóm tắt

Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of A. archeri and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields.

Từ khóa


Tài liệu tham khảo

Wysokowski, 2015, Chitin as a versatile template for extreme biomimetics, Polymers, 7, 235, 10.3390/polym7020235

Ehrlich, 2010, Chitin and collagen as universal and alternative templates in biomineralization, Int. Geo. Rev., 52, 661, 10.1080/00206811003679521

Agbaje, 2018, Biomacromolecules within bivalve shells: Is chitin abundant?, Acta Biomater., 80, 176, 10.1016/j.actbio.2018.09.009

Ehrlich, 2007, First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera), J. Exp. Zool. B Mol. Dev. Evol., 308B, 347, 10.1002/jez.b.21156

Ehrlich, 2016, Supercontinuum generation in naturally occurring glass sponges spicules, Adv. Opt. Mater., 4, 1608, 10.1002/adom.201600454

Nikolov, 2010, Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: The example of lobster cuticle, Adv. Mater., 22, 519, 10.1002/adma.200902019

Brunner, 2009, Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta, J. Struct. Biol., 168, 539, 10.1016/j.jsb.2009.06.018

Ehrlich, 2007, First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera), J. Exp. Zool., 308B, 473, 10.1002/jez.b.21174

Ehrlich, 2010, Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin, Int. J. Biol. Macromol., 47, 132, 10.1016/j.ijbiomac.2010.05.007

Ehrlich, 2010, Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications, Int. J. Biol. Macromol., 47, 141, 10.1016/j.ijbiomac.2010.05.009

Ehrlich, 2010, Insights into chemistry of biological materials: Newly discovered silica-aragonite-chitin biocomposites in demosponges, Chem. Mater., 22, 1462, 10.1021/cm9026607

Roberts, G.A.F. (1992). Chitin Chemistry, MacMillian. [1st ed.].

Santos, 2012, Recovery of protein, chitin, carotenoids and glycosaminoglycans from Pacific white shrimp (Litopenaeus vannamei) processing waste, Process Biochem., 47, 570, 10.1016/j.procbio.2011.12.012

Hackman, 1962, Studies on chitin V. The action of mineral acids on chitin, Aust. J. Biol. Sci., 15, 526, 10.1071/BI9620526

Brine, 1981, Chitin variability with species and method of preparation, Comp. Biochem. Physiol., 69B, 283

Hayes, 2008, Mining marine shellfish wastes for bioactive molecules: Chitin and chitosan – Part B: Applications, Biotechnol. J., 3, 878, 10.1002/biot.200800027

Rasti, 2017, Chitin from the Mollusc chiton: extraction, characterization and chitosan preparation, Iran J. Pharm. Res., 16, 366

Bulut, 2017, In situ chitin isolation from body parts of a centipede and lysozyme adsorption studies, Mater. Sci. Eng. C, 70, 552, 10.1016/j.msec.2016.08.048

Ibitoye, 2018, Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket, Biomed. Mater., 13, 025009, 10.1088/1748-605X/aa9dde

Soon, 2018, Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration, Int. J. Biol. Macromol., 108, 135, 10.1016/j.ijbiomac.2017.11.138

Rinaudo, 2006, Chitin and chitosan: properties and applications, Prog. Polym. Sci., 31, 603, 10.1016/j.progpolymsci.2006.06.001

Younes, 2015, Chitin and chitosan preparation from marine sources. Structure, properties and applications, Mar. Drugs, 13, 1133, 10.3390/md13031133

Foster, 1957, Application of ethylenediaminetetraacetic acid in the isolation of crustacean chitin, Nature, 180, 40, 10.1038/180040a0

Arbia, 2013, Chitin extraction from crustacean shells using biological methods - A review, Food Technol. Biotechnol., 51, 12

Kaya, 2014, The quick extraction of chitin from an epizoic crustacean species (Chelonibia patula), Nat. Prod. Res., 28, 2186, 10.1080/14786419.2014.927469

Shahidi, 1991, Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards, J. Agric. Food Chem., 39, 1527, 10.1021/jf00008a032

Martin, R.E., Flick, G.J., Hebard, C.E., and Ward, D.R. (1982). Chemistry & Biochemistry of Marine Food Products, AVI Publishing Co.

Marquis-Duval, F.O. (2008). Isolation et valorisation des constituants de la carapace de la crevette nordique. [Ph.D. Thesis, Laval University].

Kaur, 2015, Recent trends in biological extraction of chitin from marine shell wastes: A review, Crit. Rev. Biotechnol., 35, 44, 10.3109/07388551.2013.798256

Truong, 2007, Valorisation des residus industriels de peches pour la transformation de chitosane par technique hydrothermo-chimique, Rev. Sci. Eau., 20, 253

Okafor, 1965, Isolation of chitin from the shell of the cuttlefish, Sepia officinalis L., BBA, 101, 193

Khanafari, 2008, Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods, Iran J. Env. Heal. Sci. Eng., 5, 1

Berton, 2018, Enzymatic hydrolysis of ionic liquid-extracted chitin, Carbohydr. Polym., 199, 228, 10.1016/j.carbpol.2018.07.014

Knidri, 2018, Extraction, chemical modification and characterization of chitin and chitosan, Int. J. Biol. Macromol., 120, 1181, 10.1016/j.ijbiomac.2018.08.139

Tokatli, 2017, Optimization of chitin and chitosan production from shrimp wastes and characterization, J. Food. Process. Preserv., 42, e13494, 10.1111/jfpp.13494

Dun, 2018, Simultaneous fermentation and hydrolysis to extract chitin from crayfish shell waste, Int. J. Biol. Macromol., 123, 420, 10.1016/j.ijbiomac.2018.11.088

Saravana, 2018, Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste, Carbohydr. Polym., 195, 622, 10.1016/j.carbpol.2018.05.018

Castro, 2018, Chitin extraction from Allopetrolisthes punctatus crab using lactic fermentation, Biotechnol. Rep., 20, e00287, 10.1016/j.btre.2018.e00287

Huang, 2018, Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent, J. Agric. Food Chem., 66, 11897, 10.1021/acs.jafc.8b03847

Hong, 2019, Sustainable co-solvent induced one step extraction of low molecular weight chitin with high purity from raw lobster shell, Carbohydr. Polym., 205, 236, 10.1016/j.carbpol.2018.10.045

Jesionowski, T., Norman, M., Żółtowska-Aksamitowska, S., Petrenko, I., Joseph, Y., and Ehrlich, H. (2018). Marine spongin: naturally prefabricated 3D scaffold-based biomaterial. Mar. Drugs, 16.

Żółtowska-Aksamitowska, S., Shaala, L.A., Youssef, D.T.A., Elhady, S.S., Tsurkan, M.V., Petrenko, I., Wysokowski, M., Tabachnick, K., Meissner, H., and Ivanenko, V.N. (2018). First report on chitin in a non-Verongiid marine Demosponge: the Mycale euplectellioides case. Mar. Drugs, 16.

Tsurkan, 2018, The demosponge Pseudoceratina purpurea as a new source of fibrous chitin, Int. J. Biol. Macromol., 112, 1021, 10.1016/j.ijbiomac.2018.02.071

Van Soest, R.W.M., Boury-Esnault, N., Hooper, J.N.A., Rützler, K., de Voogd, N.J., Alvarez, B., Hajdu, E., Pisera, A.B., Manconi, R., and Schönberg, C. (1875). World Porifera database. Aplysina Archeri, Available online: http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id=169636.

Bechmann, N., Ehrlich, H., Eisenhofer, G., Ehrlich, A., Meschke, S., Ziegler, C.G., and Bornstein, S.R. (2018). Anti-tumorigenic and anti-metastatic activity of the sponge-derived marine drugs Aeroplysinin-1 and Isofistularin-3 against Pheochromocytoma in vitro. Mar. Drugs, 16.

Wysokowski, 2013, Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge, Int. J. Biol. Macromol., 62, 94, 10.1016/j.ijbiomac.2013.08.039

Nickerl, 2014, The multi-layered protective cuticle of Collembola: a chemical analysis, J. R. Soc. Interface, 11, 6, 10.1098/rsif.2014.0619

Ehrlich, 2013, Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta, Sci. Rep., 3, 3497, 10.1038/srep03497

Focher, 1992, Structural differences between chitin polymorphs and their precipitates from solutions—evidence from CP-MAS 13C-NMR, FT-IR and FT-Raman spectroscopy, Carbohydr. Polym., 17, 97, 10.1016/0144-8617(92)90101-U

Kumirska, 2010, Application of spectroscopic methods for structural analysis of chitin and chitosan, Mar. Drugs, 8, 1567, 10.3390/md8051567

Wysokowski, 2013, Poriferan chitin as template for hydrotermal zirconia deposition, Front. Mater. Sci., 7, 248, 10.1007/s11706-013-0212-x

Duan, 2014, Hydrophobic Modification on surface of chitin sponges for highly effective separation of oil, Appl. Mater. Interfaces, 6, 19933, 10.1021/am505414y

Setti, 1999, Enhanced degradation of heavy oil in an aqueous system by a Pseudomonas sp. in the presence of natural and synthetic sorbents, Biores. Technology, 67, 191, 10.1016/S0960-8524(98)00099-6

2014, Removal of petroleum spill in water by chitin and chitosan, Electron. J. Chem., 6, 70

Lv, 2016, Preparation and characterization of a chitin/platelet-poor plasma composite as a hemostatic material, RSC Advances, 6, 95358, 10.1039/C6RA20782K

Drozd, 2018, Effect of nanocrystalline particles of chitin on blood components in humans and experimental animals, Bull Exp. Biol. Med., 164, 766, 10.1007/s10517-018-4076-z

Dotto, 2015, Adsorption of Methylene Blue by ultrasonic surface modified chitin, J. Colloid Interface Sci., 446, 133, 10.1016/j.jcis.2015.01.046

Ravichandran, 2011, Microwave synthesis-a potential tool for green chemistry, Int. J. Chem. Tech. Res., 3, 466

Ondruschka, 2004, Microwave assisted synthesis–a critical technology overview, Green Chem., 6, 128, 10.1039/B310502D

Duarte, 2014, Green analytical methodologies for preparation of extracts and analysis of bioactive compounds, Compr. Anal. Chem., 65, 59

Ramawat, K., and Mérillon, J.M. (2014). Microwave-assisted extraction of polysaccharides. Polysaccharides, Springer.

Apriyanti, 2018, Influence of microwave irradiation on extraction of chitosan from shrimp shell waste, Reaktor, 18, 45, 10.14710/reaktor.18.1.45-50

Muslim, 2009, Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf, Cabohydr. Polym., 77, 410, 10.1016/j.carbpol.2009.01.032

Sahu, 2009, Microwave mediated rapid synthesis of chitosan, J. Mater Sci. Mater Med., 20, 171, 10.1007/s10856-008-3549-4

Lertwattanaseri, 2009, Microwave technique for efficient deacetylation of chitin nanowhiskers to a chitosan nanoscaffold, Carbohydr. Res., 344, 331, 10.1016/j.carres.2008.10.018

Peniston, Q.P., and Johnson, E.L. (1979). Process for activating chitin by microwave treatment and improved activated chitin product. (US4159932).

Wongpanit, 2005, Preparation and characterization of microwave-treated carboxymethyl chitin and carboxymethyl chitosan films for potential use in wound care application, Macromol Biosci., 5, 1001, 10.1002/mabi.200500081

Gunasekera, 1992, Fistularin 3 and 11-ketofistularin 3. Feline leukemia virus active bromotyrosine metabolites from the marine sponge Aplysina archeri, J. Nat. Prod., 55, 509, 10.1021/np50082a020

Ciminiello, 2001, Archerine, A novel anti-histaminic bromotyrosine-derived compound from the caribbean marine sponge Aplysina archeri, Eur. J. Org. Chem., 1, 55, 10.1002/1099-0690(200101)2001:1<55::AID-EJOC55>3.0.CO;2-T

Cimino, 1984, The zoochrome of the sponge Verongia aerophoba (“Uranidine”), Tetrahedron Lett., 25, 2925, 10.1016/S0040-4039(01)81328-9

Schleuter, 2013, Chitin–based renewable materials from marine sponges for uranium adsorption, Carbohydr. Polym., 92, 712, 10.1016/j.carbpol.2012.08.090

Stepniak, 2016, A novel chitosan/sponge chitin origin material as a membrane for supercapacitors – preparation and characterization, RSC Advances, 6, 4007, 10.1039/C5RA22047E

Wysokowski, 2013, Preparation of chitin–silica composites by in vitro silicification of two–dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions, Mater. Sci. Eng., 33, 3935, 10.1016/j.msec.2013.05.030

Ruys, A.J. (2013). Biomimetic potential of chitin–based composite biomaterials of poriferan origin. Biomimetic Biomaterials: Structure and Applications, Woodhead Publishing.

Wysokowski, 2015, Extreme biomimetic approach for development of novel chitin–GeO2 nanocomposites with photoluminescent properties, Nano Res., 8, 2288, 10.1007/s12274-015-0739-5

Petrenko, 2017, Chitin of poriferan origin and the bioelectrometallurgy of copper/copper oxide, Int. J. Biol. Macromol., 104, 1626, 10.1016/j.ijbiomac.2017.01.084

Steck, 2010, Discrimination between cells of murine and human origin in xenotransplants by species specific genomic in situ hybridization, Xenotransplantation, 17, 153, 10.1111/j.1399-3089.2010.00577.x

Mutsenko, 2017, 3D chitinous scaffolds derived from cultivated marine demosponge Aplysina aerophoba for tissue engineering approaches based on human mesenchymal stromal cells, Int. J. Biol. Macromol., 104, 1966, 10.1016/j.ijbiomac.2017.03.116

Mutsenko, 2017, Novel chitin scaffolds derived from marine sponge Ianthella basta for tissue engineering approaches based on human mesenchymal stromal cells: biocompatibility and cryopreservation, Int. J. Biol. Macromol., 104, 1955, 10.1016/j.ijbiomac.2017.03.161

Okamoto, 2013, Synthetic biopolymer nanocomposites for tissue engineering scaffolds, Prog. Polym. Sci., 38, 1487, 10.1016/j.progpolymsci.2013.06.001

Prasadh, 2018, Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects, Oral Sci. Int., 15, 48, 10.1016/S1348-8643(18)30005-3

Chang, 2013, Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials, Carbohydr.Polym., 91, 7, 10.1016/j.carbpol.2012.07.070

Niu, 2011, Infiltration of Silica Inside Fibrillar Collagen, Angew. Chem. Int. Ed., 50, 11688, 10.1002/anie.201105114

Smolyakov, 2016, AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites, Carbohydr. Polym., 151, 373, 10.1016/j.carbpol.2016.05.042

Chen, 2019, Bioinspired hydrogels: Quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation, Carbohydr. Polym., 207, 411, 10.1016/j.carbpol.2018.12.007

Shaala, L.A., Asfour, H.Z., Youssef, D.T.A., Żółtowska-Aksamitowska, S., Wysokowski, M., Tsurkan, M., Galli, R., Meissner, H., Petrenko, I., and Tabachnick, K. (2019). New source of 3D chitin scaffolds: the Red Sea demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida). Mar. Drugs, 17.

Rohde, 2012, Growth and regeneration of the elephant ear sponge Ianthella basta (Porifera), Hydrobiologia, 687, 219, 10.1007/s10750-011-0774-5

Jaworska, 2007, Degradation of chitin with hydrogen peroxide in microwave fields, Progress on Chemistry of Chitin and Its Derivatives, Volume 12, 13

Felinto, 2007, The swelling behavior of chitosan hydrogels membranes obtained by UV- and γ-radiation, Nucl. Instrum. Methods Phys. Res. B, 265, 418, 10.1016/j.nimb.2007.09.025