Sự tiếp xúc với các chuyển hóa của benzen gây ra tổn thương oxy hóa trong Saccharomyces cerevisiae

Antonie van Leeuwenhoek - Tập 109 - Trang 841-854 - 2016
Abhishek Raj1, Vasanthi Nachiappan1
1Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India

Tóm tắt

Hydroquinone (HQ) và benzoquinone (BQ) là những chuyển hóa của benzen được biết đến, hình thành các trung gian phản ứng như các species oxy phản ứng (ROS). Nghiên cứu này cố gắng hiểu ảnh hưởng của các chuyển hóa của benzen (HQ và BQ) đến trạng thái chống oxy hóa, hình thái tế bào, mức độ ROS và biến đổi lipid trong nấm men Saccharomyces cerevisiae. Có sự giảm sút trong mô hình tăng trưởng của các tế bào kiểu hoang dã tiếp xúc với HQ/BQ. Việc tiếp xúc với các tế bào nấm men với các chuyển hóa của benzen đã làm tăng hoạt động của các enzyme chống oxy hóa như catalase, superoxide dismutase và glutathione peroxidase nhưng dẫn đến sự giảm sút của axit ascorbic và glutathione dạng khử. Mức độ triglyceride tăng và mức độ phospholipid giảm đã được quan sát thấy khi tiếp xúc với HQ và BQ. Những kết quả này cho thấy rằng các enzyme chống oxy hóa đã tăng lên và tham gia vào việc bảo vệ chống lại tổn thương đại phân tử trong điều kiện stress oxy hóa; có thể những enzyme này là thiết yếu cho việc loại bỏ các tác động pro-oxidant của các chuyển hóa benzen.

Từ khóa

#benzen #chuyển hóa #hydroquinone #benzoquinone #stress oxy hóa #Saccharomyces cerevisiae #enzyme chống oxy hóa

Tài liệu tham khảo

Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382 Aksoy M (1989) Hematotoxicity and carcinogenicity of benzene. Environ Health Perspect 82:193–197 Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57:1825–1835 Aust SD (1994) Thiobarbituric acid assay reactants. Methods Toxicol 1B:367–374 Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735 Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem Rev 44:276–287 Bell RM, Coleman RA (1980) Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem 49:459–487 Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917 Bose S, Sinha SP (1994) Modulation of ochratoxin-produced genotoxicity in mice by vitamin C. Food Chem Toxicol 32:533–537 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 Carman GM, Zeimetz GM (1996) Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Biol Chem 271:13293–13296 Chattopadhyay MK, Raghu G, Sharma YVRK, Biju AR, Rajasekharan MV, Shivaji (2011) Increase in oxidative stress at low temperature in an antarctic bacterium. Curr Microbiol 62:544–546 Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61(2):192–208 Davies KJA (1995) Oxidative stress: the paradox of life. Biochem Soc Symp 61:1–31 Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026 Dix TA, Aikens J (1993) Mechanisms and biological relevance of lipid peroxidation initiation. Chem Res Toxicol 6:2–18 Driver AS, Kodavanti PS, Mundy WR (2000) Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22(2):175–181 Golding BT, Barnes ML, Bleasdale C, Henderson AP, Jiang D, Li X (2010) Modeling the formation and reactions of benzene metabolites. Chem Biol Interact 184:196–200 Hapala I, Marza E, Ferreira T (2011) Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. Biol Cell 103:271–285 IARC (1977) IARC Monographs on the evaluation of the carcinogenic risk of chemicals to man, vol 15, Some Fumigants, the Herbicides 2,4-d and 2,4,5-T, Chlorinated dibenzodioxins and Miscellaneous Industrial Chemicals, Lyon, p 255–264 Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem 35:382–382 Kataoka M, Fukura Y, Shinohara Y, Baba Y (2005) Analysis of mitochondrial membrane potential in the cells by microchip flow cytometry. Electrophoresis 26(15):3025–3031 Kohlwein SD, Veenhuis M, van der Klei IJ (2013) Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat–store ‘em up or burn ‘em down. Genetics 193:1–50 Lesuisse E, Labbe P (1995) Effects of cadmium and of YAP1 and CAD1/YAP2 genes on iron metabolism in the yeast Saccharomyces cerevisiae. Microbiology 141:2937–2943 Lin CL, Chen HJ, Hou WC (2002) Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecyl sulfate polyacrylamide gels. Electrophoresis 23:513–516 Lingnert H, Goran A, Caj EE (1989) Antioxidative effect of superoxide dismutase from Saccharomyces cerevisiae in model systems. J Agric Food Chem 37:23–28 Maiorino M, Gregolin C, Ursini F (1990) Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol 186:448–457 Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474 Marnett LJ (1999) Lipid peroxidation: DNA damage by malondialdehyde. Mutat Res 424:83–95 Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG (1992) Contemporary issues in toxicology: quinone chemistry and toxicity. Toxicol Appl Pharmacol 112:2–16 Muthukumar K, Rajakumar S, Sarkar MN, Nachiappan V (2011) Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress. Antonie Van Leeuwenhoek 99:761–771 O’Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem-Biol Interact 80:1–14 Omaye ST, Turnbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Methods Enzymol 62:3–11 Padh H (1991) Vitamin C: newer insights into its biochemical functions. Nutr Rev 49:65–70 Rajakumar S, Ravi C, Nachiappan V (2016) Defect of zinc transporter ZRT1 ameliorates cadmium induced lipid accumulation in Saccharomyces cerevisiae. Metallomics. doi:10.1039/C6MT00005C Rouser G, Fleischer S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorous analysis of spots. Lipids 5:494–496 Senaratna T, Mackay CE, Mckersie BD, Fletcher RA (1988) Uniconazol induced chilling tolerancein tomato and its relationship to antioxidant content. J Plant Physiol 133:55–61 Shen HM, Shi CY, Lee HP, Ong CN (1994) Aflatoxin Br induced lipid peroxidation in rat liver. Toxicol Appl Pharmacol 127:145–150 Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394 Snyder R, Hedli CC (1996) An overview of benzene metabolism. Environ Health Perspect 104(Suppl. 6):1165–1171 Srinivasan P, Sabitha KE, Shyamaladevi CS (2007) Attenuation of 4-nitroquinoline 1-oxide induced in vitro lipid peroxidation by green tea polyphenols. Life Sci 80:1080–1086 Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140(Pt 3):569–576 Steffesen IL, Mesna OJ, Andruchow E, Namork E, Hylland K, Andersen RA (1994) Cytotoxicity and accumulation of Hg, Ag, Cd, Cu, Pb and Zn in human peripheral T and B lymphocytes and monocytes in Vitro. Gen. Pharmac 25:1621–1633 Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 18:321–336 Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326 Treadwell FP, Hall WT (1948) Analytical chemistry, vol 2. Wiley, New York Ursini F, Maiorino M, Brigelius-Flohe R, Aumann KD, Roveri A, Schomburg D, Flohe L (1995) Diversity of glutathione peroxidases. Methods Enzymol 252:38–53 Vertuani S, Angusti A, Manfredini S (2004) The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des 10(14):1677–1694 Vijayaraj P, Sabarirajan J, Nachiappan V (2010) Enhanced phospholipase B activity and alteration of phospholipids and neutral lipids in Saccharomyces cerevisiae exposed to N-nitrosonornicotine. Antonie Van Leeuwenhoek 99:567–577 Wallace L (1996) Environmental exposure to benzene: an update. Environ Health Perspect 104(Suppl. 6):1129–1136 Wiemels J, Smith MT (1999) Enhancement of myeloid cell growth by benzene metabolites via the production of active oxygen species. Free Radic Res 30:93–103 Yamashita A, Sugiura T, Waku K (1997) Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem 122:1–16 Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Research 97:111–199