Sự tiếp xúc với arsenic, hydrocarbon thơm đa vòng, kim loại và mối liên hệ với các loại ung thư da ở người trưởng thành tại Hoa Kỳ

Springer Science and Business Media LLC - Tập 30 - Trang 101681-101708 - 2023
Humairat H Rahman1, Walker Toohey2, Stuart H. Munson-McGee3
1New Mexico State University, Las Cruces, USA
2Burrell College of Osteopathic Medicine, Las Cruces, USA
3Data Forward Analytics, LLC, Principal, Las Cruces, USA

Tóm tắt

Trên toàn thế giới, ung thư da ảnh hưởng đến hàng triệu người mỗi năm và được phân loại rộng rãi thành hai loại: melanoma và không melanoma. Độc tính của kim loại đối với sức khỏe con người là một vấn đề sức khỏe cộng đồng và lâm sàng do việc sử dụng rộng rãi của chúng trong công cụ, máy móc, và thiết bị cũng như sự phân bố rộng rãi của chúng trong không khí, nước, và đất. Arsenic là một metalloide gây ung thư có mặt trong vỏ trái đất. Các hydrocarbon thơm đa vòng (PAHs) là độc hại cho con người, và sự cháy không hoàn chỉnh của nhiên liệu hóa thạch là nguồn chính của PAHs. Các quần thể con người tiếp xúc với kim loại từ nhiều nguồn khác nhau có thể dẫn đến nhiều bệnh tật, bao gồm ung thư. Có rất ít nghiên cứu được thực hiện để đánh giá đồng thời mối tương quan của nhiều kim loại arsenic, PAHs với sự xuất hiện của ung thư da. Nghiên cứu này nhằm phân tích mối liên kết giữa sáu hợp chất PAHs, bảy loại arsenic, và mười bốn kim loại từ mẫu nước tiểu với ung thư da ở người lớn tại Hoa Kỳ. Chúng tôi đã thực hiện một phân tích cắt ngang sử dụng dữ liệu từ tổng cộng 14,716 người lớn từ cơ sở dữ liệu Khảo sát Kiểm tra và Dinh dưỡng Sức khỏe Quốc gia (NHANES) trong ba chu kỳ từ 2011–2012 đến 2015–2016. Các hồi quy logit khảo sát phức tạp có trọng số đã được thực hiện. Các mô hình hồi quy logit tuyến tính sử dụng chỉ các hiệu ứng chính được thực hiện trước tiên để xác định mối tương quan giữa các biến nhân khẩu học và lối sống đã chọn với melanoma, không melanoma, và các loại ung thư da không xác định. Một tập hợp thứ hai của các mô hình hồi quy logit tuyến tính hiệu ứng chính đã được xây dựng để kiểm tra mối liên quan giữa melanoma, không melanoma, và các loại ung thư da khác cùng với bảy loại arsenic (axit arsenous, axit arsenic, arsenobetaine, arsenocholine, axit dimethylarsinic, axit monomethylacrsonic, và tổng arsenic), sáu PAHs (1-hydroxynaphthalene, 2-hydroxynaphthalene, 3-hydroxyfluorene, 2-hydroxyfluorene, 1-hydroxyphenathrene, và 1-hydroxypyrene), và mười bốn kim loại (barium, cadmium, cobalt, cesium, molybdenum, manganese, lead, antimony, tin, strontium, thallium, tungsten, uranium, và mercury) khi được điều chỉnh cho các biến điều chỉnh đã chọn. Phân tích thống kê được thực hiện bằng phần mềm R, phiên bản 4.0.4. Một mối tương quan dương marginal có ý nghĩa giữa tổng arsenic và không melanoma đã được quan sát. Nghiên cứu này đã xác định được một mối liên kết tích cực có ý nghĩa giữa barium, cadmium, cesium, mercury, tin và sự phát triển của melanoma. Cesium cho thấy một mối liên kết thống kê dương có ý nghĩa đối với không melanoma, và thallium cho thấy một mối liên kết thống kê gần đạt ý nghĩa đối với không melanoma. Một mối liên hệ tích cực có ý nghĩa thống kê đã được tìm thấy giữa cadmium và một loại ung thư da không xác định. Các phát hiện của nghiên cứu này chỉ ra một mối liên hệ tích cực có ý nghĩa thống kê giữa ung thư da với barium, cadmium, cesium, tin, mercury, và thallium. Cần khuyến nghị các nghiên cứu tiếp theo ở người để bác bỏ hoặc xác nhận các phát hiện này.

Từ khóa

#ung thư da #arsenic #hydrocarbon thơm đa vòng #kim loại #nghiên cứu sức khỏe

Tài liệu tham khảo

Abolhasani R, Araghi F, Tabary M, Aryannejad A, Mashinchi B, Robati RM (2021) The impact of air pollution on skin and related disorders: a comprehensive review. Dermatol Ther 34(2):e14840. https://doi.org/10.1111/dth.14840 Agusa T, Trang PT, Lan VM, Anh DH, Tanabe S, Viet PH, Berg M (2014) Human exposure to arsenic from drinking water in Vietnam. Sci Total Environ 488-489:562–569. https://doi.org/10.1016/j.scitotenv.2013.10.039 Alam M, Nanda S, Mittal BB, Kim NA, Yoo S (2011) The use of brachytherapy in the treatment of nonmelanoma skin cancer: a review. J Am Acad Dermatol 65(2):377–388. https://doi.org/10.1016/j.jaad.2010.03.027 Almahroos M, Kurban AK (2004) Ultraviolet carcinogenesis in nonmelanoma skin cancer. Part I: incidence rates in relation to geographic locations and in migrant populations. Skinmed. 3(1):29–36. https://doi.org/10.1111/j.1540-9740.2004.02331.x Armstrong BG, Gibbs G (2009) Exposure-response relationship between lung cancer and polycyclic aromatic hydrocarbons (PAHs). Occup Environ Med 66(11):740–746. https://doi.org/10.1136/oem.2008.043711 Baastrup R, Sørensen M, Balstrøm T, Frederiksen K, Larsen CL, Tjønneland A, Overvad K, Raaschou-Nielsen O (2008) Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 116(2):231–237. https://doi.org/10.1289/ehp.10623 Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2005) Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113(2):192–200. https://doi.org/10.1289/ehp.7337 Baudouin C, Charveron M, Tarroux R, Gall Y (2002) Environmental pollutants and skin cancer. Cell Biol Toxicol 18(5):341–348. https://doi.org/10.1023/a:1019540316060 Beane Freeman LE, Dennis LK, Lynch CF, Thorne PS, Just CL (2004) Toenail arsenic content and cutaneous melanoma in Iowa. Am J Epidemiol 160(7):679–687. https://doi.org/10.1093/aje/kwh267 Bedaiwi A, Wysong A, Rogan EG, Clarey D, Arcari CM (2022) Arsenic exposure and melanoma among US adults aged 20 or older, 2003-2016. Public Health Rep 137(3):548–556. https://doi.org/10.1177/00333549211008886 Bishop BN, Lynch DT (2023) Kaposi Sarcoma. In: StatPearls. StatPearls Publishing Bloome D, Ang S (2020) Marriage and union formation in the united states: recent trends across racial groups and economic backgrounds. Demography 57(5):1753–1786. https://doi.org/10.1007/s13524-020-00910-7 Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8(3):444–472. https://doi.org/10.1023/a:1018465507029 Boffetta P, Merler E, Vainio H (1993) Carcinogenicity of mercury and mercury compounds. Scand J Work Environ Health 19(1):1–7. https://doi.org/10.5271/sjweh.1510 Böni R, Schuster C, Nehrhoff B, Burg G (2002) Epidemiology of skin cancer. Neuro Endocrinol Lett 23(Suppl 2):48–51 Brandt MG, Moore CC (2019) Nonmelanoma skin cancer. Facial Plast Surg Clin North Am 27(1):1–13. https://doi.org/10.1016/j.fsc.2018.08.001 Castro-Larragoitia J, Morton-Bermea O, Pérez-Rodríguez RY, Razo-Soto I, Montes-Ávila I, Hernández-Álvarez E, Arellano-Álvarez ÁA (2021) Metal(loid) exposure on children from a historical metallurgical site. Environ Geochem Health 43(8):2803–2817. https://doi.org/10.1007/s10653-020-00795-w Campanella B, Colombaioni L, Benedetti E, Di Ciaula A, Ghezzi L, Onor M, D'Orazio M, Giannecchini R, Petrini R, Bramanti E (2019) Toxicity of thallium at low doses: a review. Int J Environ Res Public Health 16(23):4732. https://doi.org/10.3390/ijerph16234732 CDC (2013a) National Health and Nutrition Examination Survey 2011-2012 Data documentation, codebook, and frequencies medical conditions (MCQ_G). https://wwwn.cdc.gov/nchs/nhanes/2011-2012/MCQ_G.htm. Accessed 16 Sept 2022 CDC (2013b) National Health and Nutrition Examination Survey 2011-2012 Data documentation, codebook, and frequencies health insurance (HIQ_G). https://wwwn.cdc.gov/nchs/nhanes/2011-2012/HIQ_G.htm. Accessed 16 Sept 2022 CDC (2014a) National Health and Nutrition Examination Survey 2011-2012 Data documentation, codebook, and frequencies polyaromatic hydrocarbons (PAHs) - urine (PAH_G). https://wwwn.cdc.gov/nchs/nhanes/2011-2012/PAH_G.htm. Accessed 16 Sept 2022 CDC (2014b) National Health and Nutrition Examination Survey 2011-2012 Data documentation, codebook, and frequencies arsenics - total & speciated - urine (UAS_G). https://wwwn.cdc.gov/nchs/nhanes/2011-2012/UAS_G.htm. Accessed 16 Sept 2022 CDC (2014c) National Health and Nutrition Examination Survey 2011-2012 Data documentation, codebook, and frequencies metals - urine (UHM_G). https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/UHM_G.htm. Accessed 16 Sept 2022 CDC (2014d) National Health and Nutrition Examination Survey 2011-2012 Data documentation, codebook, and frequencies mercury: inorganic - urine (UHG_G). https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/UHG_G.htm. Accessed 16 Sept 2022 CDC (2015a) National Health and Nutrition Examination Survey 2013-2014 Data documentation, codebook, and frequencies medical conditions (MCQ_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/MCQ_H.htm. Accessed 16 Sept 2022 CDC (2015b) National Health and Nutrition Examination Survey 2011-2012 Data documentation, codebook, and frequencies demographic variables & sample weights (DEMO_G). https://wwwn.cdc.gov/nchs/nhanes/2011-2012/demo_g.htm. Accessed 16 Sept 2022 CDC (2015c) National Health and Nutrition Examination Survey 2013-2014 Data documentation, codebook, and frequencies demographic variables and sample weights (DEMO_H). https://wwwn.cdc.gov/nchs/nhanes/2013-2014/demo_h.htm. Accessed 16 Sept 2022 CDC (2015d) National Health and Nutrition Examination Survey 2011-2012 Data documentation, codebook, and frequencies body measures (BMX_G). https://wwwn.cdc.gov/nchs/nhanes/2011-2012/BMX_G.htm. Accessed 16 Sept 2022 CDC (2015e) National Health and Nutrition Examination Survey 2013-2014 Data documentation, codebook, and frequencies body measures (BMX_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/BMX_H.htm. Accessed 16 Sept 2022 CDC (2015f) National Health and Nutrition Examination Survey 2013-2014 data documentation, codebook, and frequencies health insurance (HIQ_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/HIQ_H.htm. Accessed 16 Sept 2022 CDC (2015g) National Health and Nutrition Examination Survey 2011-2012 Data documentation, codebook, and frequencies smoking - cigarette use (SMQ_G). https://wwwn.cdc.gov/nchs/nhanes/2011-2012/SMQ_G.htm. Accessed 16 Sept 2022 CDC (2016a) National Health and Nutrition Examination Survey 2013-2014 Data documentation, codebook, and frequencies polycyclic aromatic hydrocarbons (PAH) - Urine (PAH_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/PAH_H.htm. Accessed 16 Sept 2022 CDC (2016b) National Health and Nutrition Examination Survey 2013-2014 Data documentation, codebook, and frequencies arsenics - speciated - urine (UAS_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UAS_H.htm. Accessed 16 Sept 2022 CDC (2016c) National Health and Nutrition Examination Survey 2013-2014 Data documentation, codebook, and frequencies metals - urine (UM_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UM_H.htm. Accessed 16 Sept 2022 CDC (2016d) National Health and Nutrition Examination Survey 2013-2014 Data documentation, codebook, and frequencies mercury: inorganic - urine (UHG_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UHG_H.htm. Accessed 16 Sept 2022 CDC (2016e) National Health and Nutrition Examination Survey 2011-2012 data documentation, codebook, and frequencies albumin & creatinine - urine (ALB_CR_G). https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/ALB_CR_G.htm. Accessed 16 Sept 2022 CDC (2016f) National Health and Nutrition Examination Survey 2013-2014 Data documentation, codebook, and frequencies albumin & creatinine - urine (ALB_CR_H). https://wwwn.cdc.gov/nchs/nhanes/2013-2014/alb_cr_h.htm. Accessed 16 Sept 2022 CDC (2016g) National Health and Nutrition Examination Survey 2013-2014 Data documentation, codebook, and frequencies smoking - cigarette use (SMQ_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/SMQ_H.htm. Accessed 16 Sept 2022 CDC (2017a) About the National Health and Nutrition examination Survey. https://www.cdc.gov/nchs/nhanes/about_nhanes.htm. Accessed 16 Sept 2022 CDC (2017b) National Health and Nutrition Examination Survey 2015-2016 Data documentation, codebook, and frequencies medical conditions (MCQ_I). https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/MCQ_I.htm. Accessed 16 Sept 2022 CDC (2017c) National Health and Nutrition Examination Survey 2015-2016 Data documentation, codebook, and frequencies smoking – polycyclic aromatic hydrocarbons (PAHs) – urine (PAH_I) https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PAH_I.htm. Accessed 16 Sept 2022 CDC (2017d) National Health and Nutrition Examination Survey 2015-2016 Data documentation, codebook, and frequencies demographic variables and sample weights (DEMO_I). https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DEMO_i.htm. Accessed 16 Sept 2022 CDC (2017e) National Health and Nutrition Examination Survey 2015-2016 Data documentation, codebook, and frequencies body measures (BMX_I). https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/BMX_I.htm. Accessed 16 Sept 2022 CDC (2017f) National Health and Nutrition Examination Survey 2015-2016 Data documentation, codebook, and frequencies health insurance (HIQ_I). https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/HIQ_I.htm. Accessed 16 Sept 2022 CDC (2017g) National Health and Nutrition Examination Survey 2015-2016 Data documentation, codebook, and frequencies smoking - cigarette use (SMQ_I). https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/SMQ_I.htm. Accessed 16 Sept 2022 CDC (2018a) National Health and Nutrition Examination Survey 2015-2016 Data documentation, codebook, and frequencies speciated arsenics - urine (UAS_I). https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/UAS_I.htm. Accessed 16 Sept 2022 CDC (2018b) National Health and Nutrition Examination Survey 2015-2016 Data documentation, codebook, and frequencies metals - urine (UM_I). https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/UM_I.htm. Accessed 16 Sept 2022 CDC (2018c) National Health and Nutrition Examination Survey 2015-2016 Data documentation, codebook, and frequencies mercury: inorganic - urine (UHG_I). https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/UHG_I.htm. Accessed 16 Sept 2022 CDC (2019) National Health and Nutrition Examination Survey 2015-2016 Data documentation, codebook, and frequencies albumin & creatinine - urine (ALB_CR_I). https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/ALB_CR_I.htm. Accessed 16 Sept 2022 CDC (2020) Defining adult overweight and obesity. https://www.cdc.gov/obesity/adult/defining.html. Accessed 16 Sept 2022 CDC (2022a) National Health and Nutrition Examination Survey 2013-2014 Data documentation, codebook, and frequencies arsenic - total - urine (UTAS_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UTAS_H.htm. Accessed 16 Sept 2022 CDC (2022b) National Health and Nutrition Examination Survey 2015-2016 Data documentation, codebook, and frequencies arsenic - total - urine (UTAS_I). https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/UTAS_I.htm. Accessed 16 Sept 2022 Chen QY, DesMarais T, Costa M (2019) Metals and mechanisms of carcinogenesis. Annu Rev Pharmacol Toxicol 59:537–554. https://doi.org/10.1146/annurev-pharmtox-010818-021031 Concha G, Broberg K, Grandér M, Cardozo A, Palm B, Vahter M (2010) High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of northern Argentina. Environ Sci Technol 44(17):6875–6880. https://doi.org/10.1021/es1010384 Cvjetko P, Cvjetko I, Pavlica M (2010) Thallium toxicity in humans. Arh Hig Rada Toksikol 61(1):111–119. https://doi.org/10.2478/10004-1254-61-2010-1976 Debois JM (1994) Cesium-137 brachytherapy for epithelioma of the skin of the nose: experience with 370 patients. J Belge Radiol 77(1):1–4 Deng Q, Dai X, Feng W, Huang S, Yuan Y, Xiao Y, Zhang Z, Deng N, Deng H, Zhang X, Kuang D, Li X, Zhang W, Zhang X, Guo H, Wu T (2019) Co-exposure to metals and polycyclic aromatic hydrocarbons, microRNA expression, and early health damage in coke oven workers. Environ Int 122:369–380. https://doi.org/10.1016/j.envint.2018.11.056 Dhar SK, St Clair DK (2012) Manganese superoxide dismutase regulation and cancer. Free Radic Biol Med 52(11-12):2209–2222. https://doi.org/10.1016/j.freeradbiomed.2012.03.009 Duarte AF, Nagore E, Silva JNM, Picoto A, Pereira AC, Correia OJC (2018) Sun protection behaviour and skin cancer literacy among outdoor runners. Eur J Dermatol 28(6):803–808. https://doi.org/10.1684/ejd.2018.3450 Endres, CJ (2021) nhanesA: NHANES data retrieval. R package version 0.6.5.3. https://cran.r-project.org/package=nhanesA. Accessed 16 Sept 2022 Ferreccio C, Sancha AM (2006) Arsenic exposure and its impact on health in Chile. J Health Popul Nutr 24(2):164–175 Fowler BA, Yamauchi H, Conner EA, Akkerman M (1993) Cancer risks for humans from exposure to the semiconductor metals. Scand J Work Environ Health 19(Suppl 1):101–103 Fu Z, Xi S (2020) The effects of heavy metals on human metabolism. Toxicol Mech Methods 30(3):167–176. https://doi.org/10.1080/15376516.2019.1701594 Garbe C, Keim U, Gandini S, Amaral T, Katalinic A, Hollezcek B, Martus P, Flatz L, Leiter U, Whiteman D (2021) Epidemiology of cutaneous melanoma and keratinocyte cancer in white populations 1943-2036. Eur J Cancer 152:18–25. https://doi.org/10.1016/j.ejca.2021.04.029 Garbinski LD, Rosen BP, Chen J (2019) Pathways of arsenic uptake and efflux. Environ Int 126:585–597. https://doi.org/10.1016/j.envint.2019.02.058 Ghaderi A, NasehGhafoori P, Rasouli-Azad M, Sehat M, Mehrzad F, Nekuei M, Aaseth J, Banafshe HR, Mehrpour O (2018) Examining of thallium in cigarette smokers. Biol Trace Elem Res 182(2):224–230. https://doi.org/10.1007/s12011-017-1107-y Gilbert-Diamond D, Li Z, Perry AE, Spencer SK, Gandolfi AJ, Karagas MR (2013) A population-based case-control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ Health Perspect 121(10):1154–1160. https://doi.org/10.1289/ehp.1206178 Glaser KS, Tomecki KJ (2020) Sunscreens in the United States: current status and future outlook. Adv Exp Med Biol 1268:355–379. https://doi.org/10.1007/978-3-030-46227-7_18 Goutam Mukherjee A, Ramesh Wanjari U, Renu K, Vellingiri B, Valsala Gopalakrishnan A (2022) Heavy metal and metalloid - induced reproductive toxicity. Environ Toxicol Pharmacol 92:103859. https://doi.org/10.1016/j.etap.2022.103859 Guney M, Kismelyeva S, Akimzhanova Z, Beisova K (2020) Potentially toxic elements in toys and children's jewelry: a critical review of recent advances in legislation and in scientific research. Environ Pollut 264:114627. https://doi.org/10.1016/j.envpol.2020.114627 Guo HR, Yu HS, Hu H, Monson RR (2001) Arsenic in drinking water and skin cancers: cell-type specificity (Taiwan, ROC). Cancer Causes Control 12(10):909–916. https://doi.org/10.1023/a:1013712203455 Hall AH (2002) Chronic arsenic poisoning. Toxicol Lett 128(1-3):69–72. https://doi.org/10.1016/s0378-4274(01)00534-3 Hartwig A (2013) Cadmium and cancer. Met Ions Life Sci 11:491–507. https://doi.org/10.1007/978-94-007-5179-8_15 Hao WM, Baker S, Lincoln E, Hudson S, Lee SD, Lemieux P (2018) Cesium emissions from laboratory fires. J Air Waste Manage Assoc 68(11):1211–1223. https://doi.org/10.1080/10962247.2018.1493001 Hashim D, Boffetta P (2014) Occupational and environmental exposures and cancers in developing countries. Ann Glob Health 80(5):393–411. https://doi.org/10.1016/j.aogh.2014.10.002 Haupert TA, Wiersma JH, Goldring JM (1996) Health effects of ingesting arsenic-contaminated groundwater. Wis Med J 95(2):100–104 Hemminki K, Li X (2003) Level of education and the risk of cancer in Sweden. Cancer Epidemiol Biomarkers Prev 12(8):796–802 Hernroth B, Holm I, Gondikas A, Tassidis H (2018) Manganese inhibits viability of prostate cancer cells. Anticancer Res 38(1):137–145. https://doi.org/10.21873/anticanres.12201 Hossain S, Latifa GA, Prianqa, & Al Nayeem, A. (2019) Review of cadmium pollution in Bangladesh. Journal of Health & Pollution 9(23):190913. https://doi.org/10.5696/2156-9614-9.23.190913 Ikeda M, Ezaki T, Tsukahara T, Moriguchi J, Furuki K, Fukui Y, Okamoto S, Ukai H, Sakurai H (2003) Bias induced by the use of creatinine-corrected values in evaluation of beta2-microgloblin levels. Toxicol Lett 145(2):197–207. https://doi.org/10.1016/s0378-4274(03)00320-5 Jaafar R, Omar I, Jidon AJ, Wan-Khamizar BW, Siti-Aishah BM, Sharifah-Noor-Akmal SH (1993) Skin cancer caused by chronic arsenical poisoning--a report of three cases. Med J Malaysia 48(1):86–92 Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. https://doi.org/10.1093/bmb/ldg032 Johnson-Obaseki SE, Labajian V, Corsten MJ, McDonald JT (2015) Incidence of cutaneous malignant melanoma by socioeconomic status in Canada: 1992-2006. J Otolaryngol Head Neck Surg 44:53. https://doi.org/10.1186/s40463-015-0107-1 Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107. https://doi.org/10.1002/jat.1649 Kaur S, Kamli MR, Ali A (2011) Role of arsenic and its resistance in nature. Can J Microbiol 57(10):769–774. https://doi.org/10.1139/w11-062 Kemnic TR, Coleman M (2022) Thallium toxicity. In: StatPearls. StatPearls Publishing Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8(14):23905–23926. https://doi.org/10.18632/oncotarget.14733 Khanjani N, Jafarnejad AB, Tavakkoli L (2017) Arsenic and breast cancer: a systematic review of epidemiologic studies. Rev Environ Health 32(3):267–277. https://doi.org/10.1515/reveh-2016-0068 Kim KH, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80. https://doi.org/10.1016/j.envint.2013.07.019 Kim JJ, Kim YS, Kumar V (2019) Heavy metal toxicity: an update of chelating therapeutic strategies. J Trace Elem Med Biol 54:226–231. https://doi.org/10.1016/j.jtemb.2019.05.003 Kim TH, Seo JW, Hong YS, Song KH (2017) Case-control study of chronic low-level exposure of inorganic arsenic species and nonmelanoma skin cancer. J Dermatol 44(12):1374–1379. https://doi.org/10.1111/1346-8138.13993 Knobeloch LM, Zierold KM, Anderson HA (2006) Association of arsenic-contaminated drinking-water with prevalence of skin cancer in Wisconsin’s Fox River Valley. J Health Popul Nutr 24(2):206–213 Langston ME, Brown HE, Lynch CF, Roe DJ, Dennis LK (2022) Ambient UVR and environmental arsenic exposure in relation to cutaneous melanoma in Iowa. Int J Environ Res Public Health 19(3):1742. https://doi.org/10.3390/ijerph19031742 Lasithiotakis K, Leiter U, Meier F et al (2008) Age and gender are significant independent predictors of survival in primary cutaneous melanoma. Cancer 112(8):1795–1804. https://doi.org/10.1002/cncr.23359 Lee PK (2004) Common skin cancers. Minn Med 87(3):44–47 Lee KK, Bing R, Kiang J, Bashir S, Spath N, Stelzle D, Mortimer K, Bularga A, Doudesis D, Joshi SS, Strachan F, Gumy S, Adair-Rohani H, Attia EF, Chung MH, Miller MR, Newby DE, Mills NL, McAllister DA, Shah A (2020) Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study. Lancet Glob Health 8(11):e1427–e1434. https://doi.org/10.1016/S2214-109X(20)30343-0 Leiter U, Eigentler T, Garbe C (2014) Epidemiology of skin cancer. Adv Exp Med Biol 810:120–140. https://doi.org/10.1007/978-1-4939-0437-2_7 Leiter U, Keim U, Garbe C (2020) Epidemiology of skin cancer: update 2019. Adv Exp Med Biol 1268:123–139. https://doi.org/10.1007/978-3-030-46227-7_6 Lennartson A (2015) Toxic thallium. Nat Chem 7(7):610. https://doi.org/10.1038/nchem.2286 Léonard A, Gerber GB (1997) Mutagenicity, carcinogenicity and teratogenicity of thallium compounds. Mutat Res 387(1):47–53. https://doi.org/10.1016/s1383-5742(97)00022-7 Li S, Xiao T, Zheng B (2012) Medical geology of arsenic, selenium and thallium in China. Sci Total Environ 421-422:31–40. https://doi.org/10.1016/j.scitotenv.2011.02.040 Li Z, Kuang H, Li L, Wu M, Liao Z, Zeng K, Ye Y, Fan R (2023) What adverse health effects will environmental heavy metal co-exposure bring us: based on a biological monitoring study of sanitation workers. Environ Sci Pollut Res Int 30(13):35769–35780. https://doi.org/10.1007/s11356-022-24805-9 Lin B, Yang Y, Yang L, Liu G, Li C, Xu J, Hou S, Zheng M (2022) Congener profiles and process distributions of polychlorinated biphenyls, polychlorinated naphthalenes and chlorinated polycyclic aromatic hydrocarbons from secondary copper smelting. J Hazard Mater 423(Pt B):127125. https://doi.org/10.1016/j.jhazmat.2021.127125 Linares MA, Zakaria A, Nizran P (2015) Skin cancer. Prim Care 42(4):645–659. https://doi.org/10.1016/j.pop.2015.07.006 Lomas A, Leonardi-Bee J, Bath-Hextall F (2012) A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166(5):1069–1080. https://doi.org/10.1111/j.1365-2133.2012.10830.x Lu CI, Huang CC, Chang YC et al (2007) Short-term thallium intoxication: dermatological findings correlated with thallium concentration. Arch Dermatol 143(1):93–98. https://doi.org/10.1001/archderm.143.1.93 Lumley T (2004) Analysis of complex survey samples. J Stat Softw. https://doi.org/10.18637/jss.v009.i08 Lumley TS (2010) Complex surveys: a guide to analysis using R. Wiley, Hoboken Lumley T (2020) Package ‘survey’: analysis of complex survey samples, version 4.0. https://cran.r-project.org/web/packages/survey/survey.pdf Marchiset-Ferlay N, Savanovitch C, Sauvant-Rochat MP (2012) What is the best biomarker to assess arsenic exposure via drinking water? Environ Int 39(1):150–171. https://doi.org/10.1016/j.envint.2011.07.015 Martin EM, Fry RC (2018) Environmental influences on the epigenome: exposure- associated dna methylation in human populations. Annu Rev Public Health 39:309–333. https://doi.org/10.1146/annurev-publhealth-040617-014629 Martinez-Zamudio R, Ha HC (2011) Environmental epigenetics in metal exposure. Epigenetics 6(7):820–827. https://doi.org/10.4161/epi.6.7.16250 Matthews NH, Fitch K, Li WQ, Morris JS, Christiani DC, Qureshi AA, Cho E (2019a) Exposure to trace elements and risk of skin cancer: a systematic review of epidemiologic studies. Cancer Epidemiol Biomarkers Prev 28(1):3–21. https://doi.org/10.1158/1055-9965.EPI-18-0286 Matthews NH, Koh M, Li WQ, Li T, Willett WC, Stampfer MJ, Christiani DC, Morris JS, Qureshi AA, Cho E (2019b) A prospective study of toenail trace element levels and risk of skin cancer. Cancer Epidemiol Biomarkers Prev 28(9):1534–1543. https://doi.org/10.1158/1055-9965.EPI-19-0214 Mayer JE, Goldman RH (2016) Arsenic and skin cancer in the USA: the current evidence regarding arsenic-contaminated drinking water. Int J Dermatol 55(11):e585–e591. https://doi.org/10.1111/ijd.13318 Mazumder DG (2008) Chronic arsenic toxicity & human health. Indian J Med Res 128(4):436–447 Mehri A (2020) Trace elements in human nutrition (II) - an update. Int J Prev Med 11:2. https://doi.org/10.4103/ijpvm.IJPVM_48_19 Melnikov P, Zanoni LZ (2010) Clinical effects of cesium intake. Biol Trace Elem Res 135(1-3):1–9. https://doi.org/10.1007/s12011-009-8486-7 Moitra S, Brashier BB, Sahu S (2014) Occupational cadmium exposure-associated oxidative stress and erythrocyte fragility among jewelry workers in India. Am J Ind Med 57(9):1064–1072. https://doi.org/10.1002/ajim.22336 Moorthy B, Chu C, Carlin DJ (2015) Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci 145(1):5–15. https://doi.org/10.1093/toxsci/kfv040 Nishito Y, Kambe T (2018) Absorption mechanisms of iron, copper, and zinc: an overview. J Nutr Sci Vitaminol 64(1):1–7. https://doi.org/10.3177/jnsv.64.1 Nwaozuzu CC, Partick-Iwuanyanwu KC, Abah SO (2021) Systematic review of exposure to polycyclic aromatic hydrocarbons and obstructive lung disease. Journal of Health & Pollution 11(31):210903. https://doi.org/10.5696/2156-9614-11.31.210903 Omrane F, Gargouri I, Khadhraoui M, Elleuch B, Zmirou-Navier D (2018) Risk assessment of occupational exposure to heavy metal mixtures: a study protocol. BMC Public Health 18(1):314. https://doi.org/10.1186/s12889-018-5191-5 Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300(5621):939–944. https://doi.org/10.1126/science.1081903 Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK (2021) Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262:128350. https://doi.org/10.1016/j.chemosphere.2020.128350 Pérez-Gómez B, Aragonés N, Gustavsson P, Plato N, López-Abente G, Pollán M (2005) Cutaneous melanoma in Swedish women: occupational risks by anatomic site. Am J Ind Med 48(4):270–281. https://doi.org/10.1002/ajim.20212 Platanias LC (2009) Biological responses to arsenic compounds. J Biol Chem 284(28):18583–18587. https://doi.org/10.1074/jbc.R900003200 Podgorski J, Wu R, Chakravorty B, Polya DA (2020) Groundwater arsenic distribution in India by machine learning geospatial modeling. Int J Environ Res Public Health 17(19):7119. https://doi.org/10.3390/ijerph17197119 Puri P, Nandar SK, Kathuria S, Ramesh V (2017) Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol 83(4):415–423. https://doi.org/10.4103/0378-6323.199579 Qiao YL, Taylor PR, Yao SX et al (1997) Risk factors and early detection of lung cancer in a cohort of Chinese tin miners. Ann Epidemiol 7(8):533–541. https://doi.org/10.1016/s1047-2797(97)00115-4 Qin YC, Tang LY, Su Y, Chen LJ, Su FX, Lin Y, Zhang AH, Ren ZF (2014) Association of urinary cesium with breast cancer risk. Asian Pac J Cancer Prev 15(22):9785–9790. https://doi.org/10.7314/apjcp.2014.15.22.9785 R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.r-project.org/ Rahman HH, Niemann D, Munson-McGee SH (2022a) Environmental exposure to metals and the risk of high blood pressure: a cross-sectional study from NHANES 2015-2016. Environ Sci Pollut Res Int 29(1):531–542. https://doi.org/10.1007/s11356-021-15726-0 Rahman HH, Niemann D, Munson-McGee SH (2022b) Urinary metals, arsenic, and polycyclic aromatic hydrocarbon exposure and risk of chronic bronchitis in the US adult population. Environ Sci Pollut Res Int 29(48):73480–73491. https://doi.org/10.1007/s11356-022-20982-9 Rahman HH, Niemann D, Munson-McGee SH (2022c) Association between asthma, chronic bronchitis, emphysema, chronic obstructive pulmonary disease, and lung cancer in the US population. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-022-23631-3 Rahman HH, Niemann D, Munson-McGee SH (2022d) Association between environmental toxic metals, arsenic and polycyclic aromatic hydrocarbons and chronic obstructive pulmonary disease in the US adult population. Environ Sci Pollut Res Int 29(36):54507–54517. https://doi.org/10.1007/s11356-022-19695-w Rahman HH, Niemann D, Munson-McGee SH (2022e) Urinary metals, arsenic, and polycyclic aromatic hydrocarbon exposure and risk of self-reported emphysema in the US adult population. Lung 200(2):237–249. https://doi.org/10.1007/s00408-022-00518-1 Rahman HH, Niemann D, Munson-McGee SH (2022f) Association of albumin to creatinine ratio with urinary arsenic and metal exposure: evidence from NHANES 2015-2016. Int Urol Nephrol 54(6):1343–1353. https://doi.org/10.1007/s11255-021-03018-y Rahman HH, Niemann D, Munson-McGee SH (2022g) Association among urinary polycyclic aromatic hydrocarbons and depression: a cross-sectional study from NHANES 2015-2016. Environ Sci Pollut Res Int 29(9):13089–13097. https://doi.org/10.1007/s11356-021-16692-3 Rahman HH, Niemann D, Munson-McGee SH (2022h) Association of chronic kidney disease with exposure to polycyclic aromatic hydrocarbons in the US population. Environ Sci Pollut Res Int 29(16):24024–24034. https://doi.org/10.1007/s11356-021-17479-2 Rahman MA, Rahman A, Khan M, Renzaho A (2018) Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: a scoping review. Ecotoxicol Environ Saf 150:335–343. https://doi.org/10.1016/j.ecoenv.2017.12.032 Rahman HH, Yusuf KK, Niemann D, Dipon SR (2020) Urinary speciated arsenic and depression among US adults. Environ Sci Pollut Res Int 27(18):23048–23053. https://doi.org/10.1007/s11356-020-08858-2 Raimondi S, Suppa M, Gandini S (2020) Melanoma epidemiology and sun exposure. Acta Derm Venereol 100(11):adv00136. https://doi.org/10.2340/00015555-3491 Rehman K, Fatima F, Waheed I, Akash M (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184. https://doi.org/10.1002/jcb.26234 Rezapour M, Rezapour HA, Chegeni M, Khanjani N (2021) Exposure to cadmium and head and neck cancers: a meta-analysis of observational studies. Rev Environ Health 36(4):577–584. https://doi.org/10.1515/reveh-2020-0109 Rhee J, Vance TM, Lim R, Christiani DC, Qureshi AA, Cho E (2020) Association of blood mercury levels with nonmelanoma skin cancer in the U.S.A. using National Health and Nutrition Examination Survey data (2003-2016). Br J Dermatol 183(3):480–487. https://doi.org/10.1111/bjd.18797 Robbins D, Zhao Y (2011) The role of manganese superoxide dismutase in skin cancer. Enzyme Res 2011:409295. https://doi.org/10.4061/2011/409295 Rodríguez-Mercado JJ, Altamirano-Lozano MA (2013) Genetic toxicology of thallium: a review. Drug Chem Toxicol 36(3):369–383. https://doi.org/10.3109/01480545.2012.710633 Rogers HW, Coldiron BM (2013) Analysis of skin cancer treatment and costs in the United States Medicare population, 1996-2008. Dermatol Surg 39(1 Pt 1):35–42. https://doi.org/10.1111/dsu.12024 Saha KC (2003) Diagnosis of arsenicosis. J Environ Sci Health A Tox Hazard Subst Environ Eng 38(1):255–272. https://doi.org/10.1081/ese-120016893 Sample A, He YY (2018) Mechanisms and prevention of UV-induced melanoma. Photodermatol Photoimmunol Photomed 34(1):13–24. https://doi.org/10.1111/phpp.12329 Sánchez-Chapul L, Santamaría A, Aschner M, Ke T, Tinkov AA, Túnez I, Osorio-Rico L, Galván-Arzate S, Rangel-López E (2023) Thallium-induced DNA damage, genetic, and epigenetic alterations. Front Genet 14:1168713. https://doi.org/10.3389/fgene.2023.1168713 Schaefer HR, Dennis S, Fitzpatrick S (2020) Cadmium: mitigation strategies to reduce dietary exposure. J Food Sci 85(2):260–267. https://doi.org/10.1111/1750-3841.14997 Scinicariello F, Buser MC (2014) Urinary polycyclic aromatic hydrocarbons and childhood obesity: NHANES (2001-2006). Environ Health Perspect 122(3):299–303. https://doi.org/10.1289/ehp.1307234 Solomon CC, White E, Kristal AR, Vaughan T (2004) Melanoma and lifetime UV radiation. Cancer Causes Control 15(9):893–902. https://doi.org/10.1007/s10552-004-1142-9 Stading R, Gastelum G, Chu C, Jiang W, Moorthy B (2021) Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (PAHs): implications for human lung cancer. Semin Cancer Biol 76:3–16. https://doi.org/10.1016/j.semcancer.2021.07.001 Stenehjem JS, Robsahm TE, Bråtveit M, Samuelsen SO, Kirkeleit J, Grimsrud TK (2017) Aromatic hydrocarbons and risk of skin cancer by anatomical site in 25 000 male offshore petroleum workers. Am J Ind Med 60(8):679–688. https://doi.org/10.1002/ajim.22741 Stoj V, Shahriari N, Shao K, Feng H (2021) Nutrition and nonmelanoma skin cancers. Clin Dermatol. https://doi.org/10.1016/j.clindermatol.2021.10.011 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660 Suomi J, Valsta L, Tuominen P (2021) Dietary heavy metal exposure among Finnish adults in 2007 and in 2012. Int J Environ Res Public Health 18(20):10581. https://doi.org/10.3390/ijerph182010581 Thang ND, Yajima I, Kumasaka MY et al (2011) Barium promotes anchorage-independent growth and invasion of human HaCaT keratinocytes via activation of c-SRC kinase. PloS One 6(10):e25636. https://doi.org/10.1371/journal.pone.0025636 Tucker MA (2009) Melanoma epidemiology. Hematol Oncol Clin North Am 23(3):383–vii. https://doi.org/10.1016/j.hoc.2009.03.010 Venturi S (2021) Cesium in biology, pancreatic cancer, and controversy in high and low radiation exposure damage-scientific, environmental, geopolitical, and economic aspects. Int J Environ Res Public Health 18(17):8934. https://doi.org/10.3390/ijerph18178934 Vianna A, Matos EP, Jesus IM, Asmus C, Câmara VM (2019) Human exposure to mercury and its hematological effects: a systematic review. Cad Saude Publica 35(2):e00091618. https://doi.org/10.1590/0102-311X00091618 Vineis P, Wild CP (2014) Global cancer patterns: causes and prevention. Lancet 383(9916):549–557. https://doi.org/10.1016/S0140-6736(13)62224-2 Vondráček J, Machala M (2021) The role of metabolism in toxicity of polycyclic aromatic hydrocarbons and their non-genotoxic modes of action. Curr Drug Metab 22(8):584–595. https://doi.org/10.2174/1389200221999201125205725 Wan F, Zhong G, Wu S, Jiang X, Liao J, Zhang X, Zhang H, Mehmood K, Tang Z, Hu L (2021) Arsenic and antimony co-induced nephrotoxicity via autophagy and pyroptosis through ROS-mediated pathway in vivo and in vitro. Ecotoxicol Environ Saf 221:112442. https://doi.org/10.1016/j.ecoenv.2021.112442 Wang M, Jia S, Lee SH, Chow A, Fang M (2021) Polycyclic aromatic hydrocarbons (PAHs) in indoor environments are still imposing carcinogenic risk. J Hazard Mater 409:124531. https://doi.org/10.1016/j.jhazmat.2020.124531 Weidenhamer JD, Miller J, Guinn D, Pearson J (2011) Bioavailability of cadmium in inexpensive jewelry. Environ Health Perspect 119(7):1029–1033. https://doi.org/10.1289/ehp.1003011 Xiang F, Lucas R, Hales S, Neale R (2014) Incidence of nonmelanoma skin cancer in relation to ambient UV radiation in white populations, 1978-2012: empirical relationships. JAMA Dermatol 150(10):1063–1071. https://doi.org/10.1001/jamadermatol.2014.762 Xie Y, Lin T, Yang M, Zhang Z, Deng N, Tang M, Xiao Y, Guo H, Deng Q (2019) Co-exposure to polycyclic aromatic hydrocarbons and metals, four common polymorphisms in microRNA genes, and their gene-environment interactions: influences on oxidative damage levels in Chinese coke oven workers. Environ Int 132:105055. https://doi.org/10.1016/j.envint.2019.105055 Yang Y, Liu G, Zheng M, Liu S, Yang Q, Liu X, Wang M, Yang L (2022) Discovery of significant atmospheric emission of halogenated polycyclic aromatic hydrocarbons from secondary zinc smelting. Ecotoxicol Environ Saf 238:113594. https://doi.org/10.1016/j.ecoenv.2022.113594