Exposure of mammal genetic diversity to mid‐21st century global change

Ecography - Tập 44 Số 6 - Trang 817-831 - 2021
Spyros Theodoridis1,2, Carsten Rahbek1, David Nogués‐Bravo1
1Center for Macroecology, Evolution and Climate, GLOBE Inst., Univ. of Copenhagen, Copenhagen, Denmark
2Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany

Tóm tắt

Accelerating climate and land‐use change are rapidly transforming Earth's biodiversity. While there is substantial evidence on the exposure and vulnerability of biodiversity to global change at the species level, the global exposure of intraspecific genetic diversity (GD) is still unknown. Here, we assess the exposure of mitochondrial GD to mid‐21st century climate and land‐use change in terrestrial mammal assemblages at grid‐cell and bioclimatic region scales under alternative narratives of future societal development. We used global predictions of mammal GD distribution based on thousands of georeferenced mitochondrial genes for hundreds of mammal species, the latest generation of global climate models from the ongoing sixth phase of the Coupled Model Intercomparison Project (CMIP6), and global future projections of land‐use prepared for CMIP6. We found that more than 50% of the genetically poorest geographic areas (grid‐cells), primarily distributed in tundra, boreal forests/taiga and temperate bioclimatic regions, will be exposed to mean annual temperature rise that exceeds 2°C compared to the baseline period under all considered future scenarios. We also show that at least 30% of the most genetically rich areas in tropical, subtropical and montane regions will be exposed to an increase of mean annual temperature > 2°C under less optimal scenarios. Genetic diversity in these rich regions is also predicted to be exposed to severe reductions of primary vegetation area and increasing human activities (an average loss of 5–10% of their total area under the less sustainable land‐use scenarios). Our findings reveal a substantial exposure of mammal GD to the combined effects of global climate and land‐use change. Meanwhile the post‐2020 conservation goals are overlooking genetic diversity, our study identifies both genetically poor and highly diverse areas severely exposed to global change, paving the road to better estimate the geography of biodiversity vulnerability to global change.

Từ khóa


Tài liệu tham khảo

10.5194/esd-10-91-2019

Allen M. R., 2018, Framing and context, Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre‐industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

10.1111/j.1365-2699.2008.02032.x

10.1038/s41467-019-13767-1

10.1016/j.tig.2017.06.007

10.1016/j.cub.2019.08.066

10.1038/s41558-019-0682-7

10.1073/pnas.1706461114

10.1093/molbev/msx184

10.1146/annurev-ecolsys-020720-042553

10.1111/gcb.14671

10.1111/gcb.14740

The convention on biological diversity 1992

10.1038/srep06898

10.1139/as-2018-0008

10.1111/gcb.14977

10.1038/s41558-018-0355-y

10.1111/ele.12376

Flato G. J., 2013, Evaluation of climate models, Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change

10.1002/wcc.551

10.1126/science.abc5654

10.1038/s41558-019-0660-0

10.1126/science.1247579

10.1126/science.aaa9092

GDAL/OGR geospatial data abstraction software library 2020

10.1111/j.1365-2486.2009.01927.x

10.1002/joc.3711

10.7717/peerj.4794

10.1038/nature10650

10.1038/nature09670

Climate change 2014: synthesis report. Contribution of working groups I II and III to the fifth assessment report of the Intergovenmental Panel on Climate Change 2014

10.1038/s41559-017-0234-3

10.1098/rspb.2014.1097

10.1175/2009JCLI3361.1

10.1126/science.abb2748

10.1111/evo.13647

10.5194/gmd-9-2973-2016

Li X. C., 2019, Mitochondria‐encoded genes contribute to the evolution of heat and cold tolerance among Saccharomyces species, Sci. Adv., 5

10.1038/nature10574

10.1098/rstb.2011.0121

10.1126/sciadv.aav7266

10.1038/s41467-020-14554-z

10.1126/science.aan8097

10.1126/science.aaf4381

10.1111/j.2041-210x.2012.00261.x

10.1098/rspb.2018.0792

10.1038/nature14324

10.1126/science.aaf2201

10.5194/gmd-9-3461-2016

10.1016/j.tree.2015.08.009

10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

10.1038/nclimate3223

10.1111/gcb.13942

10.1038/s41467-020-16684-w

10.1126/science.aan8677

10.1111/gcb.12524

10.1126/sciadv.aaw9883

10.1038/s41558-019-0406-z

Richter‐Menge J., 2019, Arctic Report Card 2019

10.1038/nclimate1415

COP‐10 decision X/2 2010

10.1126/science.aaf7671

Schulzweida U., 2019, CDO user guide (ver. 1.9.8)

10.1126/science.1259855

10.1073/pnas.1810141115

10.1111/ecog.03346

10.1038/s41467-020-16449-5

10.1038/nature22900

10.1126/sciadv.aaz9549

10.1038/s41586-020-2189-9

10.1126/science.aaa4984

10.1016/j.gecco.2015.07.012

Van Rossum G., 2009, Python 3 reference manual

10.1126/science.aar3646

10.1029/2019GL085782

10.1126/science.aax1837